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Abstract

Homogeneous, anisotropic and linearly elastic solids, subjected to a given state of strain (or stress), are considered.
The problem dealt with consists in finding the mutual orientations of the principal directions of strain to the material
symmetry axes in order to make the strain energy density stationary. Such relative orientations are described through
three Euler’s angles. When the stationarity problem is formulated for the generally anisotropic solid, it is shown that the
necessary condition for stationarity demands for coaxiality of the stress and the strain tensors. From this feature, a
procedure which leads to closed form solutions is proposed. To this end, tetragonal and cubic symmetry classes, to-
gether with transverse isotropy, are carefully dealt with, and for each case all the sets of Euler’s angles corresponding to
critical points of the energy density are found and discussed. For these symmetries, three material parameters are then
defined, which play a crucial role in ordering the energy values corresponding to each solution.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Minimization of the strain energy density is of considerable significance when stiff structures or struc-
tured materials must be achieved for a given loading, whereas its maximization is an outstanding feature
when a large amount of energy absorption under impact loading is demanded. Contrary to isotropic solids,
in presence of elastic anisotropy the strain energy density changes when any material element is rotated to
the principal directions of stress or strain. Accordingly, the orientation of the material axes can be em-
ployed as design variable to achieve the desired maximum or minimum value of the strain energy density. In
designing living tissues, nature somehow employs this kind of strategy, and adjusts the microstructure of
the material (i.e., its anisotropy), to enhance the mechanical performances. On the other hand, the same
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idea is artificially adopted when some man-made materials are produced. Among these, fibrous composites
represent the most common example of materials intrinsically anisotropic and susceptible to be properly
designed for given purposes.

The aim of this paper is to rationalize the problem of finding the extrema for the strain energy density,
with reference to linear elastic solids in presence of material symmetries.

Referring to a linearly elastic anisotropic solid, defined by an elasticity tensor with components C;j,
subjected to a constant strain state characterized by given principal strains, this goal can be achieved by
answering to the following questions: (a) which conditions must be satisfied by the stress and the strain
fields to make the strain energy density stationary, and (b) which are explicitly the corresponding mutual
orientations of the strain and the elasticity tensors that satisfy these conditions?

The answer to the first question is partially known. The results obtained up to now, which will be briefly
reviewed later, concern essentially the determination of qualitative conditions to be satisfied by absolute
maxima and minima for the strain energy density, and the number of such critical points. The problem of
the explicit evaluation of the orientations corresponding to all the stationarity values of the strain energy
density has only partially been solved. On the last point is focused the main task of the present paper, where
for some classes of anisotropy (namely, tetragonal system, transverse isotropy and cubic symmetry) all the
orientations of the principal directions of strain to the material symmetry axes at the critical points are
found and discussed.

The main results on the subject appeared in the literature are reviewed in Section 2, whereas Section 3
deals with the general formulation of the problem. Use is made of a proper definition of the elasticity tensor
in six dimensions which, contrary to the classical Voigt’s representation, preserves the tensorial character of
the constitutive law. The mutual orientation of the principal directions of strain to the material symmetry
axes is then described through three Euler’s angles. This choice, despite a certain inherent formal com-
plexity of the equations governing the problem, turns out to be appropriate when the orientations corre-
sponding to stationary values of the energy density are sought explicitly. The general condition for
stationarity of the strain energy density is also revisited, and it is shown that critical points are characterized
by coaxiality of the stress and strain tensors. Such a feature is then at the origin of the solution procedure
proposed here, which consists in finding the Euler’s angles that render a certain system of linear equations
singular.

Explicit values of these angles are then found in Section 4, with reference to solids with tetragonal
symmetry. These results are then specialized in Section 5 to the case of transverse isotropy, and in Section 6
to the case of cubic symmetry.

The results obtained are then summarized in Section 7, where some concluding remarks are also made.

2. An account of the literature

Pioneering works where extreme values of the strain energy density in anisotropic bodies are sought are
those by Banichuk (1981, 1983). Here, the problem of simultaneously evaluating the most efficient shapes
for anisotropic rods in torsion and the orientation of the anisotropy axes which minimize the structural
compliance is dealt with. The problem of defining the local values of the elastic coefficients, with fixed
directions of material axes, which minimize the energy density is also considered in plane elasticity. These
results have been extended in Banichuk and Kobelev (1987) to the case of ideally elastic—plastic solids.
Anisotropic plates with variable elastic moduli and material axes orientation have been also studied by
Kartvelishvili and Kobelev (1984), referring to optimal design for compliance and natural vibrational
frequency.

Beside these structural formulations, the study of the best positioning of elastic symmetry planes in
three-dimensional orthotropic bodies for minimum potential energy of deformation has been carried out in
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a general way in Seregin and Troitskii (1981). In this work, through the application of the Lagrangian
multipliers method, it is shown that the solution is locally characterized by a mechanically meaningful
condition, that is, coaxiality of the stress and strain tensors. Contrary to isotropic elasticity, where the strain
and stress tensors are always coaxial, in anisotropic elasticity this feature is, in general, lost. The non-trivial
result obtained by Seregin and Troitskii emphasizes a requirement that must always be fulfilled when ex-
treme values of the global stiffness are sought; consequently, it should be assumed as a guidance for an
optimal spatial arrangement of the material symmetry axes.

Later, but independently, the same problem has been dealt with in Rovati and Taliercio (1991, 1993)
where orientations of the material symmetry axes which maximize or minimize the global elastic stiffness of
a generally anisotropic three-dimensional continuum are sought. Necessary stationarity conditions for the
strain energy density are directly computed, assuming the strain state to be given, and their mechanical
interpretation (that is, collinearity of principal directions of stress and strain) is highlighted. Some closed
form solutions for cubic and transversely isotropic materials are found, and a material parameter, re-
sponsible of the relative shear stiffness of the solid, is introduced. It is shown how two classes of solutions
can be defined according to its value: one, where stationarity of the strain energy density is accompanied by
full collinearity of principal directions of stress, strain and material axes; the other one, where this col-
linearity is only partially preserved.

Due to pertinence to practical applications, much effort has been devoted to two-dimensional solids. In
particular, the elastic problem previously described has been reformulated for plane elasticity in Sacchi
Landriani and Rovati (1991), and conditions for absolute maximum and minimum structural stiffness are
found; an extension to plates in bending is given as well. Careful investigations in this direction should be
mentioned, such as those given by Pedersen (1989), where it is found that the best orientations of the
material axes depend on a dimensionless material parameter, plus the ratio of the two principal strains.
Coaxiality of the material axes and the principal strain directions always corresponds to stationary values
for the energy density (trivial solutions); however, in some strain conditions, stationarity can also be
achieved at some non-trivial orientations. In addition to these considerations referred to any material point,
analyses are also carried out for the whole solid (Pedersen, 1990), through applications of sensitivity
analysis, finite element analysis, and optimization procedures. Homogenization techniques, coupled with
finite element analyses and design for optimal structural performances, have led to the very effective method
of topology optimization (see Eschenauer and Olhoff, 2001, and the references therein).

A modern formulation of the problem of finding the best orientations of the material symmetry axes in a
three-dimensional continuum is given by Banichuk (1996), where the application of spectral methods of
tensor analysis makes it possible to clarify general features of the problem itself, and to discuss some
qualitative properties. Further accounts on spectral decomposition of the anisotropic elasticity tensor can
be found in Sutcliffe (1992) and Theocaris and Sokolis (2000a,b). Banichuk deals with several problems,
such as minimization of the compliance functional, the dynamic stiffness and the distortion energy. These
problems are then generalized to the case of bodies consisting of several anisotropic phases; accordingly, the
medium is represented as a polycrystalline aggregate.

The problem of extremizing the strain energy density by varying the mutual orientation of a fixed stress
state to the material symmetry axes (regardless of the considered symmetry class) has also been developed
by Cowin (1994). After showing that the stress and strain tensors commute at the stationarity (or critical)
points of the strain energy, Cowin looks for absolute maxima and minima of the energy in a subset of
orientations at which the gradient of the strain energy density vanishes respect to a second-order ortho-
gonal tensor, representing the coordinate transformation. It is shown that ‘the symmetry coordinate system
of cubic symmetry is the only situation in linear anisotropic elasticity for which a strain energy density
extremum can exist for all stress states’. The stationarity conditions for materials with other symmetries
depend on the given stress state. In particular, the conditions for the energy extrema for transversely
isotropic and orthotropic solids are found for uniaxial stress states. In Vianello (1996a) and Sgarra and
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Vianello (1997a,b) attention is paid to showing the existence of rotations of the material axes with respect to
the principal directions of strain, at which the energy density is stationary. By means of Weierstrass’ the-
orem the existence of at least two such rotations is proved, which parametrically depend on the strain tensor
for any material symmetry. At a first glance, this result seems to contradict the statement given in Cowin
(1994); nevertheless, the difference with Cowin’s formulation is that here the elastic symmetry is held fixed
for a specific strain state, whereas in Cowin (1994) a general state is considered. This difference is ex-
haustively clarified in Cowin (1997). The extension to finite anisotropic elasticity is tackled by Blume (1994)
and Vianello (1996b), where the properties of the extrema are shown to be the same as in the linear case.
Further developments in this direction concern the problem of extremizing the strain energy density, with
respect to both the orientation of the anisotropy axes and the type of material symmetry (Cowin and Yang,
2000), for a given, but arbitrary, stress state. This formulation reveals a strict connection with analogous
problems concerning the generation of optimal topologies (Eschenauer and Olhoff, 2001), where it is es-
sentially the microstructure of the solid that plays the role of design variable.

Finally, it is interesting to notice that the previously illustrated problems spontaneously arise not only in
the study of the behaviour of man-made materials, but also in the mechanics of living tissues. For instance,
Fyhrie and Carter (1986) develop a relationship between cancellous bone apparent density, trabecular
orientation and applied stress, assuming the bone to be an orthotropic, self-optimizing material. It is shown
that the trajectories of the material axes and the apparent density can be described by a unifying mini-
mization principle involving a quadratic functional, similar to the strain energy density, and a purely
quadratic Tsai-Wu failure criterion. The results predict the alignment of the material axes to the principal
stress directions, in agreement with the previously reviewed results. Mechanisms of local changes in an-
isotropic properties, that more efficiently allow the living bone to carry the loads, are shown in Cowin
(1987, 1995). These results suggest that the bone is designed by nature to have the greatest stiffness in
axial direction and the greatest impact load resistance in the transverse one. The intimate relationship
between trabecular architecture of cancellous bone and mechanics is also described by Odgaard et al.
(1997).

3. Problem formulation

The problem of finding critical points of the strain energy density function, in linearly elastic anisotropic
solids, is dealt with. In this problem, the local orientation of the anisotropy axes is assumed to be varying
from a point to another through the body, and it is conceived as variable of the problem itself. The solid is
supposed to be endowed with a positive definite strain energy. At first, no restriction on the type of elastic
anisotropy is made. In an orthogonal reference system zz,z3, the constitutive law can be written in the form
of the generalized Hooke’s law:

T = CijmEn, (1)

where T;; and Ej,; are the Cartesian components of the symmetric second-order stress and linearized strain
tensors, respectively. Ci;, are the components of the elasticity tensor of rank 4. From here onwards,
summation over repeated indices (here ranging from 1 to 3) is understood. The type of anisotropy of the
material is reflected by the symmetry group to which the elasticity tensor belongs (Smith and Rivlin, 1958;
Gurtin, 1972). Symmetry of the strain and stress tensors, along with the postulated existence of an energy
function, lead to the usual symmetries of the elasticity tensor:

Cone = Cank = Cijn = Cy- (2)

In the most general case, the elasticity tensor depends on 21 independent coefficients (triclinic system;
Gurtin, 1972): this is the case of complete anisotropy, and no restriction is placed on the elasticities Cj by
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any material symmetry property. Conversely, if the material possesses some planes or axes of elastic
symmetry, the number of independent elastic coefficients is accordingly reduced. Constraints imposed by
material symmetry on the elasticity tensor, classification of symmetry classes, and number of the different
types of anisotropy, are topics widely discussed in the literature (see, among others, Love, 1994; Hearmon,
1961; Gurtin, 1972; Ting, 1996; Forte and Vianello, 1996; Huo and Del Piero, 1991; Cowin and Mehrabadi,
1995; Chadwick et al., 2001). For any material symmetry, it is customary to define, at each point P of the
body, a ‘principal’, or ‘material’, orthogonal reference system x;x,x; in which the elasticity tensor shows the
fewest number of independent non-vanishing components.

The relationship between the Cartesian components of the elasticity tensor in the global frame z,z,z3, and
those in the local material system x;x,x3, denoted by C,., 1S given by the transformation law:

Cijhk = Qim an thqu 6mnpqa (3)

where Q;; are the components of a proper orthogonal second-order tensor Q.

The anisotropy of the solid is supposed to be given. The state of strain at each point P of the solid is
characterized by the given values of the three principal strains and by the orthogonal principal strain di-
rections X1X1X111 -

Accordingly, at each point P of the solid three Cartesian orthogonal systems of axes are defined: z|z,z;,
parallel to the global system of coordinates, which form a set of axes common to all points in the body;
x1xpx3, aligned with the material axes, which can vary point by point; and xjxpxy, the system of the
principal directions of strain.

When the material symmetry axes are locally rotated at any point in the body with respect to the fixed
system zyz,z3, the local orientations of the principal directions of strain change as well. Thus, any change in
the energy density

W= % UthUEhk = %Qimanthqu E\jmnpqE‘ith/c (4)

is due to a change in the mutual orientation between material axes x;x,x; and principal axes of strain
xpxpxmr- Accordingly, in Eq. (4) the O;; must be understood as components of a proper orthogonal tensor
that rotates the material axes with respect to the principal directions of strain.

3.1. Formulation in the six-dimensional space

It is expedient to replace the three-dimensional formulation adopted so far with a suitable formulation of
the constitutive law in the six-dimensional space. Different possible notational conventions can be found in
the literature to express the stress—strain relationship (Walpole, 1984; Cowin and Mehrabadi, 1987; Me-
hrabadi and Cowin, 1990; Nadeau and Ferrari, 1998; Ting, 1996; Helnwein, 2001). Here, the description
adopted is given by the following linear transformation is six dimensions (Walpole, 1984; Rychlewski, 1984;
Cowin and Mehrabadi, 1992):

t = Ce, (5)

where the two arrays ¢ and e gather the six independent stress and strain components, respectively:

t=(Ty Tn Ty V2T 2Ty \/lez)T (6)
e=(E, Ey Eu V2Exn V2Ey V2Ep)'- (7)
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The elasticity tensor is then consistently transformed into the 6 x 6 matrix, C:

Cin Chin Cims V2Cis V2Cis V2Chn

Cin Con Coys V203 V2Cna V2Cxn

Cnss C33 Cis V2Cis V2Csna V2Cin
V2Cis V20 V2Cis 203 2Cuy 2Cxn
V2Ciis V2Coy V2C3y 20y 2Cs31 2C312
V2Cinn V2Cpin V2Cin 2Cnin 2Cyn 2Chon

C:

According to this representation, the stress and strain tensors are mapped into the six-dimensional space in
the same manner, contrary to the more frequently adopted Voigt’s notation where only the shearing strains
are affected by a multiplicative factor 2 (Love, 1994; Lekhnitskii, 1981; Sirotin and Chaskolkaia, 1984;
Mehrabadi and Cowin, 1990). The advantage of the Voigt’s choice is that the components of the strain
vector have the physical meaning of engineering strains. It has been proved by Mehrabadi and Cowin
(1990) that the 6 x 6 matrix in (5) contains the components of a second-order tensor in six dimensions,
whereas this tensorial character is lost in the Voigt’s notation (Nye, 1957; Hearmon, 1961; Fedorov, 1968;
Ting, 1996).

For the sake of conciseness, vector and tensor components in six dimensions will be denoted by low-
ercase letters, and the usual contraction of indices, which replaces any pair of indices with a single index
(ie., 11=1,22=2,33=3,23=32=4,31=13=5 and 12=21=6) is assumed. In such a way the matrix
representation (5) can be explicitly written as

4 Cit Ci2 C13 Cig Cis Cie (3]
15) Cla2 Cx»n €3 (o4 Cp5 C26 €
13 _ Ci3 €23 (33 C34 C35 C36 €3 ) (9)
Iy Cl4 Co4 C34 C44 C45 C46 ey
ts Cis C5 €35 C45 Css Cs6 €s
143 Cle Cx C36 Cia6 Cs6 Cop €6

The components of the elasticity tensor in six-dimensions referred to the material symmetry axes will be
denoted by é; (i,j=1,...,6) and collected into the matrix C. To express the components of the second-
rank elasticity tensor in any reference frame, c;, in terms of the elastic constants ¢;;, a suitable rotation
tensor ¢ in six dimensions must be defined, such that

Cij = qimanémir (10)

This equation represents the six-dimensional counterpart of Eq. (3). The definition of the orthogonal tensor
¢ can be found in Mehrabadi and Cowin (1990), where its matrix representation is given as

_ (944 94uB
1= <qBA qBB) (1)
with
2 2 2
11 12 13
944 = Q%l Q%z Q%3 (12)

2 2 2
Q31 32 Q33

V201,013 V2013011 V201101
4= | V20005 V20105 V20,00 (13)
V20505 V20305 V203105
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V2001051 V20005n V20305
g5 = | V20011 V20:01 V20301 (14)
V20100 V20105 V20130x

00033 + 01303% 02103 + 013031 02103 + 0203
ez = | 0001+ 0301 051013+ 0u30n 010+ 0n0n |- (15)
012023 + 01302 010+ 013001 On@n + 01l

When the problem is written in the six-dimensional space, the energy density function (4) takes the form:
W = %ijeiej = %Qimanémneiej (16)

with i,j=1,2,...,6.
3.2. Condition for critical points of strain energy density

In this section the necessary condition for stationarity of the strain energy density is first briefly reviewed.
This condition can be obtained in several ways (Seregin and Troitskii, 1981; Rovati and Taliercio, 1991,
1993; Cowin, 1994; Banichuk, 1996). Here it is preferred to recall the direct approach that makes use of the
formulation in three dimensions (Cowin, 1994), where the physical meaning of the stationarity condition
turns out in explicit form.

The objective stated in the previous section is to find stationarity points for the strain energy density
function (4), according to the orthogonality constraint on tensor Q, which, in terms of components, reads

04Ok = 5[/' (17)
where J;; is the Kronecker’s delta. By means of the Lagrangian multipliers method, this constrained

problem can be reformulated as an unconstrained one, consisting into the search for the stationarity of the
augmented (or Lagrangian) function .¥ (Cowin, 1994), defined as

L(0y; Aiy) = 3CumEEw — Ayj(QuOji — dy7), (18)
where A;; are the components of a symmetric tensor A of rank 2. Stationarity of function . with respect to
the Lagrangian multipliers A;; restores the constraint (17), whereas stationarity with respect to variables O;;,
that is, with respect to the local orientation of the anisotropy axes, is given by

0L

aQrs N
where minor and major symmetries (2) of the elasticity tensor have been taken into account. After some
algebraic manipulations, it is not difficult to show that

T;'kEir = Arka (20)

2(6mquQimthquEirEhk - Aerjs) = 07 (19)

which, by virtue of the symmetry of tensors T, E and A allows one to write
TE = ET. (21)

The commutativity of this product implies that the two tensors T and E are coaxial. Thus, the stationarity
points of the strain energy density correspond to those orientations of the principal directions of strain to
the material symmetry axes which make the principal directions of strain collinear with the principal
directions of stress. Two second-order tensors are coaxial if they have a common triad of orthogonal
eigenvectors. In isotropic elasticity, tensors T and E are always coaxial; this does not apply to anisotropic
solids unless special conditions are fulfilled, which will be explicitly derived later for some classes of elastic
symmetries.
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This coaxiality requirement is the starting point for the solution procedure leading to the analytical
determination of the orientation of the anisotropy axes to the principal directions of strain here proposed.

When the strain energy density is stationary, at each point P of the anisotropic body and in the Cartesian
coordinate system xpxyxy of the principal directions of stress and strain, condition (21) implies

i} Cl1 Ci2 C13 Ci4 €15 Cig e
n Cla Cx»n €3 (€4 C5 (26 €n
N _ | €13 €3 (33 Ca (35 C36 e (22)
0 Clg Cr4 C3q4 Caq4 C45 Cyg6 0
0 Cis €5 C35 C45 Cs5 Cs6 0
0 Clg C C3 Cas Cs6  Ces 0

which can be written, for notational purposes only, in concise form as

tp o CAA CAB €y
(6)- (& )5 )
(with Cp, = CATB). Therefore, coaxiality of the stress and strain tensors can be expressed as

ciaer + cuen + cyem = 0,
Csiep, =0 = ciser + casenr + c3semn = 0, (24)
cier + casen + cxgen = 0.

Clearly, system (24) is identically satisfied for any value of the principal strains ey, ey, ey if all the coef-
ficients ¢4, Ca4, - - -, C36 sSimultaneously vanish. This occurrence may happen only for those material sym-
metry classes for which at least a material coordinate system can be found where all the entries of submatrix
C3,4 vanish (Cowin, 1994, 1997), provided that, at the same time, these material axes are aligned with
principal directions of stress and strain. These elastic symmetries correspond to the cubic system (char-
acterized by 3 elastic coefficients), hexagonal(5) system (transverse isotropy, 5 coefficients), tetragonal(6)
system (6 coefficients) and orthorombic symmetry (9 coefficients) (see Gurtin, 1972). For the other elastic
symmetries, i.e. hexagonal (with 6 and 7 elastic coefficients), tetragonal (7 coefficients), monoclinic (13
coefficients) and triclinic (complete anisotropy, 21 coefficients), in any reference system the submatrix Cp, is
different from the null matrix (Gurtin, 1972). Therefore, for such symmetries, no particular reference frame
exists in which system (24) can be satisfied for any non-vanishing value of the principal strains. Eqgs. (24)
show that, for those elastic symmetries such that Cz, = 0 in some coordinate system, stationarity of the
energy can be achieved, in particular, for simultaneous coaxiality of principal directions of stress, strain and
material symmetry axes. This is the special case considered by Cowin (1994). In the next sections it will be
shown that coaxiality can be achieved under more general conditions.

It should be noticed that the necessary and sufficient condition under which the linear system (24) admits
non-trivial solutions reads

Clg Co4 C3y
detCBA = |Ci5 Cz5 C35 =0. (25)
Cig C26 C36

Thus, coaxiality of the stress and the strain tensors, and hence stationarity of the elastic energy density, is
obtained when the equations of system (24) are linearly dependent.

If the Cartesian components of rotation are directly employed to describe the mutual orientation of the
strain and the elasticity tensors, the orthogonality condition QQ" = 1 must be explicitly taken into account.
This constraint makes computations heavy if closed form solutions are sought. Therefore it is preferable to
assume as variables three independent unconstrained parameters, namely, three Euler’s angles. The Euler’s
angles adopted here are visualized in Fig. 1. These angles characterize any finite rotation of xp,x, Xy to
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X | X3

line of nodes

Fig. 1. Rotations defining the three Euler’s angles.

X1,X2,x3 as a sequence of three elementary rotations: the first one about x3, by an angle 6,, is followed by a
rotation about x; (in its new orientation) by an angle 6,; the third rotation is about xj (in its final ori-
entation) by an angle 0; (Lurie, 2002).

Once the Euler’s angles have been defined, the matrix representation of the proper orthogonal tensor Q
reads

C1C3 — S1C283 S1€3 + C1C283 8283
—C183 — 810203 —8183 + C1CC3 5203 s (26)
S182 —C152 (&)

where the shorthand notations s; = sin §; and ¢; = cos 0; (i = 1, 2, 3) have been adopted. It must be noticed
that, for the purposes of this work, the directions in which the axes of the reference systems xpxjxy; and
X1xx3 point is immaterial for the characterization of their relative orientation. Therefore, it is sufficient to
allow the Euler’s angles 0y, 0,, 05 to vary between 0 and .

By expressing the elastic coeflicients ¢;; in (24) as functions of the Euler’s angles 0, 0,, 05 (through Eq.
(10), definition (26) and the elements of tensor ¢ given by Egs. (12)—(15)), the condition det Cpz4 = 0 can be
seen as a constraint on the values of the Euler’s angles that allow the stress and strain tensors to be coaxial.
The principal strains ey, ey, e; compatible with such orientations can then be obtained as the eigensolu-
tions of system (24) for any set of Euler’s angles such that det Cp, = 0.

In this way, it is also possible to find those local orientations of the symmetry axes corresponding to
critical values of the strain energy density, both for any strain state and for particular values of the principal
strains.

Condition (25) can be rewritten in a slightly different form if one considers that any change in the strain
energy density, associated with any rotation of the principal strain axes to the material axes, is due to the
deviation from an isotropic term in the constitutive law of the material. From this point of view, the matrix
C can be decomposed as the sum of an isotropic part 7 and an anisotropic part A:

C=T+4. (27)

By means of the rotation matrix ¢, and taking into account that the isotropic part is unaffected by rotations
(i.e., I = qlq" = I), the decomposition (27) can be rewritten in any reference frame as

C=1+qAqg" =1+A. (28)

Consequently, it turns out that the strain energy density is the sum of an isotropic part #; and an aniso-
tropic contribution W, and reads

W=1e-Ce)=ile- (I+A)e] =W, + W,, (29)

where the dot denotes the usual inner product. Note that, in general, W; and W, cannot be individually
interpreted as strain energy density functions: the decomposition (29) is introduced to confine in W, the
dependence of the strain energy density on the Euler’s angles. The choice of the isotropic term I (and
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consequently, of the anisotropic part ;1) in the decomposition (27) is somehow arbitrary. In any reference
frame, the isotropic term adopted in the next sections is defined, on the basis of computational convenience,
as

Ci3 + Cas Ci3 Ci3 0 0 0

Ci3 Ci3 + Cus Ci3 0 0 0

_ i3 Ci3 Ci3+cy O 0 0
=1 0 0 é 0 0 (30)

0 0 0 0 ¢y O

0 0 0 0 0 ¢éu

With this choice, the term #; in (29) reads

W, = %(éwf% + Ca ) (31)

with .#; = trE and ., = trE*.

Finally, note that, by means of (27), condition (25) becomes det Cp, = det(Iz4 + Ap4) = 0, where the
submatrices Iz, and Ap, are defined similarly to Cp, in (23), and Iz, = 0 in any reference system. Thus,
condition (25) can be rewritten as

a4 Ay Az
detABA = (a5 dy; dss =0. (32)
Al Ay A3e

Condition (32) is then adopted in the next sections with reference to some classes of anisotropic solids, for
which a/l the solutions in terms of Euler’s angles are found explicitly. The corresponding values of the strain
energy density are also computed and ordered.

4. Tetragonal symmetry

Solids pertaining to the tetragonal system are characterized by the existence of five planes of elastic
mirror symmetry; the normals to four of the planes (a;, i = 1,2, 3,4) all lie in the fifth plane of symmetry, I1,
normal to as, and make angles of n/4 with respect to one another (Cowin and Mehrabadi, 1995). The
normals to three of the planes of symmetry are coordinate axes, x|, x,, x3 (see Fig. 2). In linear elasticity, the

Fig. 2. Planes of elastic mirror symmetry for the tetragonal(6) system.
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behaviour of these materials is defined by six independent stiffnesses. Referring to the coordinate system
X1x>x3, the stiffness matrix of the material reads

¢in ¢ ¢3 0 0 0
¢, ¢u ¢3 0 0 O
¢z 63 ¢ 0 0 O
0 0 0 ¢u O 0
0 0 0 0 ¢ O
0 0 0 0 0 Ces

(o}
I

(33)

In this class of material symmetry fall, as special cases, transversely isotropic materials (if ¢gs = ¢1; — ¢12),
with five independent stiffnesses, and cubic materials (if ¢,; = é33, €12 = ¢13 and ¢qq = é¢6), With three in-
dependent stiffnesses. These sub-cases will be dealt with in Sections 5 and 6, respectively.

Note that the material axes x; and x, are physically indistinguishable. In general, the elastic properties of
a tetragonal solid in the planes of symmetry orthogonal to a; and a; (see Fig. 2) differ from those in the
planes orthogonal to a, and a4, except for the case of transversely isotropic materials. The intersections of
the planes normal to @, and a4 with the plane normal to as will be denoted by x| and x5, and form another
pair of physically indistinguishable material symmetry axes, different from x; and x,.

According to Eqgs. (27) and (30), the matrix 4 can be written as

éll _613 _644 é12_613 0 0 0 0
CA’12_é13 éll _613 _644 0 0 0 0
2 _ 0 0 633 - 6‘13 - 6’44 O 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 Co6—Caa
ay a, 0 0 0 O
a, ap 0 0 0 O
0 0 a3 0 0 O
10 0 0 0O O (34)
0O 0 0 00 O
0 0 0 0 0 ae

Accordingly, the anisotropic contribution to the strain energy density W (see Eq. (29)) can be expressed as

W, = %[d]] (6% + 6‘%) + &336% + 2ap,e1er + &66eé]~ (35)

4.1. Critical points of the strain energy density

To ensure coaxiality of the stress and the strain tensors at any point of a body with tetragonal elastic
symmetry, the condition (32), i.e., det Cp, = det A, = 0, must be fulfilled, as pointed out in the preceding
section. Explicitly, this conditions reads

1 ) ) .2
—_— = dll — dlz dll + &12 — d33 d66 sm 02 Sm 292 Sm 293 =0. 36
15 @ )l ) (36)
Apparently, from this equation it can be seen that particular materials exist, whose elastic constants are
such that det(A4p,) vanishes for any orientation of the symmetry axes to the principal directions of strain.
This is the case, for instance, with cubic materials: this particular situation will be carefully studied in
Section 6. Thus, the necessary condition to achieve coaxiality of stresses and strains is that at least one of
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the Euler’s angles 6, and 6; be equal either to 0 or m/2. This means that at least one of the principal
directions of strain must lie in the plane x;x,: namely, this conditions applies for x; if 6; = 0, for xy; if
03 = m/2, and for xyy if 0, = m/2 (refer to Fig. 1). If 0, = 0, both x; and xy; lie in the plane x;x,.

Consider, for instance, the case where 0; = 0. The sets of (linearly dependent) Eqgs. (24), expressed in
terms of coefficients a;;, which have to be fulfilled to ensure coaxiality of the stress and the strain tensors
take the form:

[20(6[ + (ﬁ — 4[133)(6[1 + em) + (ﬁ + 4&33)(61[ — em) COS 292 + Y COS 401f(02)] Si;jgz = 0,

1 (0n) 2450 — 37)
2 (0) 240t — 0,

where the following material coefficients have been defined:

o= ay + 3a2 — des, (38)
B =3an + an + des, (39)
) = an — an — g, (40)

together with the function

f(0,) = =2e; + ey + ey + (en — emn) cos 20,. (41)
It is worth noting that the material parameter y can be expressed as

y=2(n —cy), (42)
where

= %((511 + ¢12 + Ce6) (43)

is the axial elasticity coefficient along x|. Thus, if y > 0 (resp., y < 0) the material is axially stiffer (resp.,
more flexible) along x; than along x].
Assuming the principal strains to be all distinct, the system (37) can be fulfilled in the following cases:

(@) 0, =n% (n=0,1,2,3) and 6, =0 or J.
(b) 0; =n7% and 0, (# 0,m/2) is such that the first equation in (37) is fulfilled, i.e., if n is even:

—2ay2e1 + (as3 — an)(en + em)

cos 26, = k(e — em) (44)
with

K =ay +as = ¢ + 633 — 2(é13 + Cua), 5)
or, if n is odd:

cos20, = —2aper + Ea;3 — ajy)(en + em) )

K’ (e — exr)

with

K'=d\ +dyy = 3(én1 + 12 + Ge6) + E33 — 2(C13 + Caa), )
or alternatively
ony (48)

2
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The coefficients a;; are the components of 4 in the Cartesian reference frame x)x,x; rotated of /4 about
x5 respect to the system x;x,x3;, and are given by

Cl,“ = %(6311 + a1 + des), allz = %(5111 + a1y — ), 033 = as;. (49)
(c) If 0, and 0, do not take any of the values listed in cases (a) and (b), the homogeneous system Ag e, =0

has rank 2: therefore, the principal strains for which collinearity of the stress and the strain tensors can
be achieved are the eigensolutions of this system, and read

1 — §sin’ 6, 1 — dcos? 0, (50)
e =——F7—¢€ e = ————=—¢€
& c0s 20, Lo cos 20, b
with
5=14 it (51)
ass

These expressions can be easily combined to obtain a relationship involving the three principal strains,
which ensures collinearity of the stress and the strain tensors, and reads
en + e = dey. (52)
When the principal strains fulfil this linear constraint, cos 20, can be expressed as
e — e —
cos 20, — 2L e~ em. (53)
e — e
so that f(0,) = 0 and Eqs. (37) are fulfilled for any value of 0, provided that the angle defined by Eq.
(53) exists, i.e., if
en + e

€ — e

(54)

0
S2-6]
A similar discussion can be made when either xj; or xyy lies in the plane xx,.

To summarize, three different situations can be encountered if the stress and the strain tensors are co-
axial, corresponding to the cases listed above, namely:

(a) all the principal directions of strain are aligned with three of the normals to planes of material symme-
try;

(b) one of the principal directions of strain is aligned with any one of the normals to the planes of material
symmetry rotated of m/4 one to each other about x3, a;, i = 1,2,3,4 (i.e., is aligned with either one of
the axes xi, x|, x2, X}3);

(c) one of the principal directions of strain lies in the plane IT orthogonal to as.

Note that a-type solutions are possible for any given state of strain, whereas b- and c-type solutions exist
only if the principal strains fulfil certain constraints. Solutions of type & require the angle 60,, defined by Eq.
(44) or Eq. (46) (or by the corresponding angle that characterizes solutions with xy; or xyy lying in the plane
x1x>) to exist: this is possible only in a certain region of the space of the principal strains (er, ey, ery) which
will be studied later. Solutions of type ¢ exist only if the principal strains fulfil the linear constraint (52) (or
the equivalent ones, that characterize the solutions with xy; or xy; lying in the plane xx,).

Note also that, in turn, the cases a and b can be split into the following sub-cases:

(a’) and (b’), where at least one of the principal directions of strain is aligned with a; or a; (i.e., with x;
or x2);
(a”) and (b"), where at least one of the principal directions of strain is aligned with a, or a4 (i.e., with x]
or Xxj).
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Table 1
Euler’s angles and orientations of the principal strain directions at the critical points of the strain energy density for tetragonal solids

Sol. type X1 X1 X1 0, 0, 03

aj X3 X] OF X; X] OF Xp 3 z z

a X1 Of X X3 X1 OT X» 0 3 0

a; X] OF X X1 Or X3 X3 0 0 0

ay X3 x| or x) x| or x} Tori z z
! / / / / I s n

a, X} or X, X3 X) or x) jor3% . z 0
! J / / ] n 1

a; X} or xh X} or x) X3 —0s +5 or +F 0 Any

bll X1 Or X € (x1 or xZ,X3) € (x1 or Xz,)@) 0 or % 9[,’] 0

blz S (xl or .Xz,JC3) X1 O X2 S (xl or xz,xg) 0 or% 6},/2/ %

bg S (X] or XZ,)C_z) S (x1 or xZ,X3) X1 O X» 0 or % % f)bf‘
1 / / / / / n 3n

by X} or x) € (x| or x},x3) € (x| or x},x3) jor Oy, 0
1 / / / / / n 3n n

b, € (x| or xb,x3) X} or x € (x} or xj,x3) jor i Hh'z' 3
1 / / / / / / n 1Y iy

by € (x} or x},x3) € (x| or x},x3) X} or x} Jor ¥ z Gb;/

c € (x1,x2) Any Any Any O, 0

c Any € (x1,x2) Any Any 0., z

c3 Any Any € (x1,x2) Any z 0.,

All the situations listed above are summarized in Table 1, where the values of the Euler’s angles and the
orientations of the principal strain directions to the material symmetry axes are given. Note that equivalent
choices for the values of the Euler’s angles other than those listed in Table 1, leading to the same physical
orientations of the axes, can be made; here, they are disregarded for the sake of conciseness.

The values of the angles 0y, 0,, 0, (i = 1,2, 3) in the last two columns of Table 1 will be explictly given
later. ‘

The solutions of type @', characterized by full collinearity of principal directions of strain and coordinate
axes, are depicted in Fig. 3. The solutions of type a” correspond to collinearity of two of the principal
directions of strain with the material symmetry axes x}, x, and are shown in Fig. 4.

Fig. 4. Collinearity of two of the principal directions of strain (dashed lines) and the material symmetry axes x}, x; (solid lines).
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“ X1, X2 = X1

Fig. 5. Collinearity of one of the principal directions of strain (dashed lines) and one of the material symmetry axes (solid lines).

Fig. 5 shows the orientations of the principal directions of strain for solutions of type 4’. These solutions
are characterized by collinearity of only one of the principal directions of strain with either x; or x,. The
plane formed by the other two principal directions of strain contains the material axis x;. The angles that
one of these directions makes to x;, indicated by 0,,/1 , (9,,/2 and 0;,; in Table 1, are such that:

—2ape a3 —an)(e e
00520,,3 . er + (ds; 1) (en + 111)7 (55)

K(eu - 6111)

—2ayen + (as; — an)(er + em)

20, = “
COS hz K(e] _ elll) 3 ( )
0820, — —2anem + (@ —an)(e +en) (57)

" K(er — en) '

Whereas stationarity points of type ¢’ and &” for the strain energy density exist for any given strain state,
stationarity points of type &’ exist provided that the Euler’s angles 0,/ (i = 1,2, 3), given by Egs. (55)-(57),
can actually be defined. Their existence is conditioned by both the local state of strain and the elastic
properties of the material. Referring, for the sake of illustration, to solution 5}, the following inequalities
must be fulfilled:

—2ape; + (as3 — an)(en + em)

—-1<
b K(en - 6111)

<1 (58)

These inequalities define a double-wedge shaped region in the plane (ey /ey, emn/er), which is qualitatively
plotted in Fig. 6, for a material with given elastic constants, together with the analogous admissible regions
for cases b, and &;. Note that the regions in which the three »’-type solutions are individually possible
mutually intersect and do not cover the entire plane of normalized strains. This means that, according to
the strain state, of the »'-type solutions either all can exist, or only some of them, or even none.

Solutions of type »” are characterized by collinearity of one of the principal directions of strain with
either x] or x} (see Fig. 7). The Euler’s angles defining these situations (0,7, i = 1,2, 3, see Table 1) can be
obtained from case b’ by replacing the components 4;; with their homologous a;j in the reference frame
xjx5xs. Explicitly, these angles are such that:

—2aper + (dy; — dyy)(en + em)

cos20,» = , 59
b K'(en — em) (59)

—2ay,en + (a5 — diy) (e + em)

20 n = 60
Cos by K'(el _ eIII) 5 ( )
cos20.» = —2d\,em + (dy; — diy)(er +en) (61)

" K'(er — ern) '
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1 erler
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Fig. 6. Regions in the plane of the normalized principal strains (ep/er, em/er) where b'-type solutions exist (dashed areas). Case of
CaZSr(C2H5C02)6: 2[112/!6 = 707405, (d33 — &11)/}( = 0.4747.

Fig. 7. Collinearity of one of the principal directions of strain (dashed lines) and one of the axes x|, x; (solid lines).

The considerations previously made regarding the existence of the »'-type solutions apply also for »"-type
solutions. These solutions exist provided that the point representative of the strain state, in the plane
(en/er, em/er), falls within double-wedge shaped regions, similar to those shown in Fig. 6 for »'-type so-
lutions. For example, the inequalities defining the region in which solution b} exists can be obtained by
replacing the a; with the homologous a;; in inequalities (58).

Finally, c-type solutions correspond to critical points of the strain energy density at which none of the
principal strain directions is aligned with any one of the material symmetry axes, but one of these directions
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X3

e

Fig. 8. Solutions characterized by one of the principal directions of strain (dashed lines) lying in the material symmetry plane (x;, x,),
rotated of an arbitrary angle.

lies in the plane IT = (x1,x,) (see Fig. 8). Provided that the principal strains fulfil particular linear con-
straints, the strain energy density turns out to be stationary for any value of 0;. The values of the Euler’s
angles 0., i = 1,2,3 (see Table 1), are such that:

2er — ey — e

cos20,, = S — with de; = ey + e, (62)
11— e
Qe — ey — e .
cos20,, = % with deyp = eqy + ey, (63)
1 — em
Qe —e;p — e .
CoS 2003 = % with 56‘11[ = e+ eyr. (64)
1 —en

Implicitly, the angles defined by Eqs. (62)—(64) are assumed to exist, i.e., the principal strains must fulfil
inequalities similar to (54).

The linear constraints to be fulfilled by the principal strains in order to get c-type solutions can be
represented by straight lines in the plane (ey /e, emn/er). For sake of illustration, in Fig. 9 the line corre-
sponding to solution c; is plotted for a particular material, together with the regions where the 5|- and b/-
type solutions, with the same principal strain lying in the plane x,x,, exist.

4.2. Classification of the stationarity points

Once the stationarity points for the strain energy density have been identified, the relevant values of the
energy are now computed and a classification of the stationarity points is made, according to the given
values of the principal strains and the elastic constants.

The values of the strain energy density W at each critical point are listed in Table 2 in compact form,
with » = I, I III for i = 1,2, 3, respectively, and s, ¢ # » subsequently taking the values I, II, III, with s # .

The material parameters in Table 2, which characterize the values of the strain energy density at b'-type
solutions are:

m = énlén + s — 2(6is + éu)] — (62 — é13)°, (65)
Ny =Enéss — (Gis + 544)2, (66)
My = C11€13 + €263z — (C13 + Caa) (C12 + C13), (67)
Ny = (€33 — Caa) (€11 — Caa) — 5%3, (68)
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Fig. 9. Regions in the plane of the normalized principal strains (ey/er, em/er) where b}- and b{-type solutions exist and line corre-
sponding to solution ¢;. Case of Ca,Sr(C,HsCO,)s: 241,/ = —0.7405, (a3 — an)/x = 0.4747, 24,,/x' = —0.9185, (dy; — a},) /' =
0.2263, 6 = 0.8541.

Table 2
Values of the strain energy density at the critical points for tetragonal solids
Sol. type Strain energy density
a W = Hesel 4 ¢ (el + €2) + 2¢ize (e + e,) + 2¢1ee]
a’ we %[20336 + (én + 012)(8.,- + e,)2 + Ceo(es — e,)2 +4¢i3e. (e, + )]
b W =5 me; + (e + e‘) + 215e,(e; + €) + 21,ee]
b" W = L€ + ny(e2 + €) + 21e (e + ) + 2n4esel]

whereas the homologous parameters associated to b”-type solutions are:

4 A aA fa A A A
ny = (en + ¢+ Ces) % — G | + Ceo(E11 + €12 — 2613) — &1, (69)
My = 3(én + 12 + Ge6)C33 — (€13 + éu)’, (70)
Ny = %(Cll + G120 — Ce6) (€33 — Caa) — C13(E13 + Cas — Coo), (71)
My = (é33 — Gaa) 3(En1 + E12 + Ces) — Cas) — &1 (72)

The value of the strain energy density corresponding to each c-type solution turns out to be numerically
equal to that found for the homologous 4'- and b”-type solutions with the same principal direction of strain
lying in the plane I1, taking the constraints fulfilled by the principal strains into account (see Egs. (62)—
(64)). Explicitly,

we=wh=wh, =123, (73)

Thus, a maximum of twelve distinct values exists for the strain energy density at the stationarity points.
In order to classify the stationarity points, here it is proposed to compare the values of the strain energy
density corresponding to solutions pertaining to each one of the classes o', ”, b’ and b”, characterized by the
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same principal strain(s) lying in the plane I1. Compare first any pair of solutions belonging to classes ¢’ and
a” with xyy; in the plane I1, e.g., solutions | and af (but the same conclusions could be drawn by comparing
solutions @, and a3). Note that x; is aligned with x3 in both solutions. The difference between the corre-
sponding values of the strain energy density is

Wa/l — Wa/l/ = iy(e“ — 611])2. (74)

The sign of this difference depends uniquely on the material parameter y. By generalizing this result, it is
possible to state that, if y > 0 one of the a’-type solutions has an energy higher than the energy associated
with all of the a”-type solutions, and that one of the a”-type solutions has an energy lower than the energy
associated with all of the «'-type solutions. The opposite holds for materials with y < 0. Note that, if the
state of strain and the material parameters are such that none of the solutions pertaining to classes #’and »”
exists, no further classification has to be done, and only the material parameter y settles the class to which
the stiffest solution belongs, and the class to which the most flexible one pertains.

Compare now the solutions belonging to classes @’ and 4" with xy; in the plane I1, for instance solutions
a) and b}, so that xyy is aligned with either x; or x, in both solutions. The difference between the corre-
sponding values of the strain energy density is

/ / 1 ~ ~ ~
we — Wb = ﬂ (a“el + aszen + (112811[)2. (75)

The sign of this difference depends uniquely on the material parameter x. By generalizing this result, it is
possible to state that, if x > 0 one of the &’-type solutions has an energy higher than the energy associated
with all of the b'-type solutions, and that one of the &'-type solutions has an energy lower than the energy
associated with all of the a'-type solutions. The opposite holds for materials with x < 0.

Similar conclusions apply obviously when a”- and b”-type solutions are compared, with reference to the
material parameter «’.

Finally, consider a pair of solutions pertaining to classes 4" and ", with the same principal strain di-
rection, say xyy, aligned with either x, or x, in the former case, and with either x| or x} in the latter case. The
difference between the corresponding values of the strain energy density is

Wb — s = (a1, + i + 2a33)em — axs )™ (76)

Y
4Kk’
The sign of this difference depends only on the material parameter y/xx’. It follows that, if p/xx’ > 0 (resp.,
y/xK’ < 0) one of the &'-type solutions has an energy higher (resp., lower) than the energy associated with
all of the b”-type solutions, and that one of the »”-type solutions has an energy that is lower (resp., higher)
than the energy at any one of the 4’-type solutions.

When the energy values associated with the solutions pertaining to the remaining pairs of classes are
compared, the signs of the relevant differences are explicitly affected by the values of the principal strains.
Thus, no general conclusion can be drawn according uniquely to material parameters regarding the clas-
sification of the energy values relevant to solutions belonging to classes @’ and 4", or to classes ¢” and b'.

The classification of the stationarity points for the strain energy density is summarized in Fig. 10. Ob-
viously, if any solution depending on the state of strain (¥'- and b”-type solutions) is not admissible, the
corresponding inequality in the chart of Fig. 10 has to be disregarded. By analyzing Fig. 10, for most ma-
terials with tetragonal symmetry it is possible to detect the class of solutions to which absolute maxima or
absolute minima for the strain energy density belong, according only to the sign of the material parameters 7,
k and k’. Exceptions are materials with y, k > 0 and ¥’ < 0, or with y, k < 0 and ¥’ > 0. In the former case, it
is just possible to state that, a priori, absolute maxima pertain either to class @’ or »”, and absolute minima
pertain either to class ¢” or b’; the opposite applies in the latter case. For these materials a complete clas-
sification requires the values of the principal strains to be explicitly taken into account, case by case.
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K'>0 > Wa>wa" Wwh'>wr"
— k>0 *|:

y>0 - K'<0 — We W' > W' b
— Kk <0 (K'<0) —> W= W' >
— k>0 (K'20) —> We>We W=

¥<0 ] K'20 = W' Wo=we "
— k<0 *|:

K'<QO = W= W >we

Fig. 10. Tetragonal symmetry: classification of the stationarity points for the strain energy density.

Once the classes of solutions that yield the extrema of the strain energy density have been identified, it is
easy to mutually compare the three solutions pertaining to each class to detect which one corresponds to an
absolute maximum or minimum.

For the sake of illustration, some plots of the strain energy density are now presented for a material with
tetragonal symmetry, namely Ba,Si,Ti;Og, subjected to different states of strain. Two of the principal
strains are kept constant in all of the cases considered (namely, e;; = 10, ey = —15), whereas the remaining
principal strain, e, takes different values in each case. The strain energy density # is normalized to the
reference value 1}, and is plotted versus two of the Euler’s angles, 6, and 6,. The third angle, 65, is given a
constant value of 0 (so that x; lies in the plane xx, in all of the cases considered). The contour plots of the
strain energy density are also shown, with the stationarity points for W marked out. The values of the
elastic coefficients for the selected material, expressed in GPa, are (see Landolt and Bornstein, 1992):
6’11 = 140, 6‘33 = 83, 6’44 = 66, 666 = 128, 6’12 = 36, 6‘13 = 24, so that V= —14, k =43 and ' = 50.

Fig. 11(a) refers to the special case where the stationarity points corresponding to the solutions per-
taining to all of the classes, d’, a”, ', b” and ¢, exist, (which, in the example, occurs at e; = 0.636). In this
case, the values of the strain energy density corresponding to solutions b/, 4], and ¢, all coincide: infinite
stationarity points exist, which are independent on 0.

Note that, consistently with the chart in Fig. 10, one has

W > W% > WS > W > wh = wh = we, (77)

Fig. 11(b) refers to any situation in which the values of the principal strains preclude the existence of c-type
solutions: the value selected for e; is 25. The angles 0, at which &'-type solutions exist are 0.934 and
n — 0.934, whereas the angles at which b{-type solutions exist are 0.757 and n — 0.757. In this case, the
values of the strain energy density corresponding to the stationarity points with 63 =0 are such that

We > W% > WS > WS > Wi > wh, (78)

so that each of the solutions with at least one of the principal strain directions aligned with either x| or x},
(i.e., a5, a; or b)) has an energy higher than the homologous solution with the same principal direction(s) of
strain aligned with either one of the coordinate axes x; or x, (i.e., a3, a; or b)).

The state of strain to which Fig. 12(a) refers is such that both one of the &'-type solutions and the c-type
solutions are missing; the value selected for e; is 60. The angles 0, at which b-type solutions exists are 0.898
and © — 0.898. In this case, the order for the values of the strain energy density at the stationarity points with
0; =01s

WS> W > wh > s > we, (79)

which lends itself to the same remark made with reference to Fig. 11(b).
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Fig. 11. Tetragonal symmetry: plots of the strain energy density for Ba,Si,Ti;Og (normalized to ;) versus the Euler’s angles 6,, 0, at
0; = 0 and relevant contour plots—(a) existence of all types of solutions; (b) case in which c-type solutions do not exist.

Finally, Fig. 12(b) refers to a state of strain for which only a’- and «&”-type solutions exist; the value
selected for e; is —100. The strain energy density takes higher values when the principal strains are aligned
with x|x,x; rather than with the coordinate axes, namely,

W > WS > WS > W, (80)

5. Transverse isotropy

The textured transversely isotropic symmetry is a special case of the crystalline hexagonal symmetry
(see, e.g., Cowin and Mehrabadi, 1995). It is characterized by a plane of elastic mirror symmetry, II,
and an infinity of indistinguishable planes of mirror symmetry orthogonal to II. All these planes
intersect at the same axis, x;, which turns out to be an axis of elastic symmetry of infinitely high
order, i.e., an axis of rotational symmetry. Plane IT will be called ‘plane of transverse isotropy’. This
material symmetry can be seen as a special case of the tetragonal symmetry dealt with in the previous
section and visualized in Fig. 2: IT is the plane normal to the unit vector as, whereas any vector lying
in II is itself a normal to a plane of mirror symmetry. Examples of artificial transversely isotropic
materials are, on the macroscopic scale, those materials having a bundled structure, as unidirectional
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Fig. 12. Tetragonal symmetry: plots of the strain energy density for Ba,Si, Ti;0g (normalized to W) versus the Euler’s angles 6,, 6, at
0; = 0 and relevant contour plots—(a) case in which ¢- and 4'-type solutions do not exist; (b) case in which only a-type solutions exist.

fiber reinforced composites, whereas layered rocks and soils, formed by the superposition of isotropic
layers parallel to the bedding plane, are an example of natural macroscopically transversely isotropic
media. Occasionally, the term ‘cross-anisotropic’ is found in the literature to denote transversely
isotropic soil deposits (see, e.g., Bowles, 1988).

The linear elastic behaviour of transversely isotropic solids is defined by five independent elastic con-
stants. Let xx,x3 be an orthogonal reference frame, with x; and x, being any pair of axes lying in the plane
of transverse isotropy. In this reference frame, the matrix of the components of the elasticity tensor takes
the form:

cu ¢ ¢33 0 O 0
¢ ¢ ¢z 0 0 0
~ Ci3 €13 €33 0 0 0
C= 0 0 0 ¢u O 0 (81)
0 0 0 0 Cu 0
0 0 0 0 0 ¢ —¢n

This is a special case of Eq. (33), where account is taken of the isotropic behaviour of the material in the
plane I1, which implies ¢¢ = ¢;; — ¢1. Note that the mutual orientation of any strain (or stress) tensor to
the symmetry planes of a transversely isotropic solid is completely defined by the orientation of the axis of
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rotational symmetry, x3, to the principal strain directions, x,x, x;;;. This orientation is known once two of
the Euler’s angles, 6, and 65, are, whereas 6; does not play any role.

By performing the decomposition of the elasticity tensor according to Egs. (27) and (30), the strain
energy density, W, can be expressed as the sum of an isotropic term W;, given by Eq. (31), and an aniso-
tropic term, W, given by

VVA = %[&11(6% + 6% + eé) + &336? + 2&12(6162 - %62)}. (82)

Only this latter contribution is affected by relative rotations of the principal directions of strains to the
material symmetry axes.

The necessary condition to be fulfilled by the strain tensor to achieve collinearity with the stress tensor,
and thus stationarity of the strain energy density, is det Cp, = det Az, = 0. Explicitly (see Eq. (36)),

1 . . .
— m (dll — dlz)z(dll + dlz — d33) SlIl2 62 SlIl2 202 SlIl2 203 =0 (83)
with dll = 6’11 — 6‘13 — 6‘44, d12 = 6’12 — 6‘13 and d33 = 6'33 — 6‘13 — 6’44. This equations is fulfilled if at least one

of the Euler’s angles 0,, 0; is either equal to zero or ©t/2, similarly to the more general case of solids with
tetragonal symmetry. This condition amounts at requiring that at least one of the principal directions of
strain must lie in the plane of transverse isotropy or that, alternatively, the axis of rotational symmetry
must lie in any of the planes defined by a pair of principal directions of strain.

The classification of the possible orientations that ensure collinearity of the stress and the strain tensors,
as well as the relevant energy values, can be deduced by the results established in the previous section. Since
IT = (x1,x,) is the plane of isotropy, only two classes of solutions exist, and are characterized by the fol-
lowing conditions:

(a) one of the principal directions of strain is aligned with the normal to the plane of transverse isotropy,
i.e., with x3; the other two lie in IT;
(b) only one of the principal directions of strain lies in the plane of transverse isotropy I1.

Both «'- and a”-type solutions for solids with tetragonal symmetry reduce to a single a-type class of
solutions for transversely isotropic solids. Analogously, #'-, b”- and c-type solutions, obtained for the
tetragonal case, all reduce to a single b-type class of solutions for transversely isotropic solids. Here again,
a-type solutions are possible for any given state of strain, whereas b-type solutions exist only if the principal
strains fulfil certain constraints, as discussed in Section 4.1.

The critical points for the strain energy density are summarized in Table 3, where the relevant values of
the Euler’s angles (6,, 0;) and the orientations of the axis of rotational symmetry, x3, to the principal di-
rections of strain are listed. Note that different values can be given to the Euler’s angles, other than those

Table 3
Euler’s angles and orientations of the principal strain directions at the critical points for transversely isotropic solids
Sol. type X3 0, 0
a) X1 g %
a X11 % 0
as X111 0 Any
b] S (X|1,X|]1) Eq (55) or (59) 0
bz S (xI;xIII) Eq (56) or (60) %
bs S (xl,x“) % Eq (57) or (61)
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listed in Table 3, leading to the same physical orientations of the axes. The angles characterizing b-type
solutions are given indifferently by the expressions obtained in Section 4.1 for 4'- and b”-type solutions.
The values of the strain energy density corresponding to a- and b-type solutions are, respectively:

Wa' = (6‘3363 + 6’11 (ef —+ etz) —+ 26‘13€r(es —+ e,) + 26’1265,6,), (84)

R —

Whi = E [’7163 + M (ef + etz) + 21’]3&(85 + et) + 21’[46;65]. (85)
Here, r = I, 11, 111 for i = 1,2, 3, respectively, s, ¢ # r subsequently take the values I, 11, III, with s # ¢, and
n;,Jj=1,...,4, are given by Egs. (65)(68).

Stationarity points of type b exist provided that the Euler’s angles 0, or 6; given by Egs. (55)—(57) can
actually be defined. Inequalities of the type (58) have then to be fulfilled, which involve both the principal
strains and the elastic properties of the material.

5.1. Classification of the stationarity points

The problem of ordering the values corresponding to the different stationarity points for the strain
energy density can be split into two separate sub-problems, similarly to the procedure followed in Section
4.2 for solids with tetragonal symmetry. First, the class of solutions (a or b) in which absolute maxima or
minima fall are identified, according only to the sign of a material parameter. Then, the solutions corre-
sponding to the extrema for the strain energy density are explicitly determined, by mutually comparing the
three energy values pertaining to each class.

Compare a pair of solutions belonging to classes ¢ and b, with the same principal strain direction (e.g.,
xm) lying in the plane of transverse isotropy, I1. Provided that the Euler’s angle which characterizes the
b-type solution exists, the difference between the corresponding values of the strain energy density reads

I . .
wa —wh = o (@111 + asen + anem)’. (86)

The sign of this difference depends uniquely on the material parameter x. Thus, similarly to what stated in
Section 4.2, if k¥ > 0 one of the a-type (resp., b-type) solutions has an energy higher (resp., lower) than the
energy associated with all of the »-type solutions. The opposite applies for materials with x < 0. Accounting
for this distinction, absolute maxima and minima can easily be obtained by exploring the three energy
values pertaining to each class.

It is worth noting that the above classification is consistent with the chart shown in Fig. 10, taking into
account that, for transversely isotropic materials, y = 0 and «’ = «.

For the sake of illustration, the strain energy density for a transversely isotropic solid is plotted in Fig. 13
versus two of the Euler’s angles, 0, and 6;. The value of the third angle, 6;, is immaterial. The strain energy
density W is normalized to the value W, given by Eq. (31). The contour plots of the strain energy density are
also shown, with the stationarity points for # marked out. The material selected is titanium boride (TiB,):
the values of the elastic coefficients for this material, expressed in GPa, are (see Landolt and Bornstein,
1992): ¢11 = 690, ¢33 = 440, ¢, = 410, ¢13 = 320, ¢44 = 500. Since for this material k = —510 GPa, it is
possible to state a priori that W finds its maximum at one of the b-type stationarity points (provided that at
least one of these solutions exists) and its minimum at one of the a-type stationarity points. The values
given to the principal strains (namely, e; = 4, e = —5, ey = 1) are such that all of the three b-type so-
lutions exist. The corresponding Euler’s angles at which b-type solutions exist are: 0, = 0.7396, &t — 0.7396
and 0; = 0 for solution b; 6, = 0.67, = — 0.67 and 6; = «n/2 for solution b,; 6, = ©/2, 6; = 0.793, = — 0.793
for solution b;. In this case, at the stationarity points the values of the strain energy density are such that
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Fig. 13. Hexagonal(5) symmetry: plots of the strain energy density for TiB, (normalized to W;) versus the Euler’s angles 0,, 0; and
relevant contour plots.

wh > whos s e > W > e, (87)

which is consistent with the negativity of .

6. Cubic symmetry

Cubic symmetry is characterized by nine planes of elastic mirror symmetry. This set of planes is formed
by three mutually perpendicular planes, normal to the unit vectors a;, a, and a3, and by six planes whose
normals are (a; + a,)/V/2, (a, = a3)//2, and (a; & a;)/V/2 (see Fig. 14). The three planes of the former set
are physically indistinguishable; the same applies for the six planes of the latter one, but the elastic
properties exhibited by the material respect to any plane of the former set differ from those exhibited respect
to any plane of the latter, unless the material is isotropic.

Let x1xpx; be a reference system collinear with a;, ay, a3; the three axes are physically indistinguishable.
In this frame, the matrix of the components of the clasticity tensor takes the form:
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cn ¢ ¢ 0 0 0
¢ ¢ ¢ 0 0 0

~ Cla Cin Cn 0 0 0

¢ = 0 0 0 éu O O (88)
0 0 0 0 ¢4 O
0 0 0 0 0 éy

This is a special case of Eq. (33), with ¢33 = ¢11, ¢13 = €12, 65 = Caa-
In this case, the strain energy density is given by (see Egs. (29), (31) and (35))
W= W,—I—%&“(ef—keg—keg), (89)

with dll = 6‘11 — 6‘12 — 6‘44 =7, S€C Eq (40)

Referring to Eq. (36), which is in general the necessary condition that ensures coaxiality of the stress and
the strain tensors at any point of a body with tetragonal elastic symmetry, it immediately prompts out that
this condition is identically fulfilled for materials with cubic symmetry. An alternative and independent
proof of the identity det Cp, = det A, = 0 for materials with cubic symmetry is given in Appendix. Thus,
contrary to the cases of materials with tetragonal symmetry and transversely isotropic solids, where col-
linearity of the stress and the strain tensors can be achieved only provided that at least one of the principal
directions of strain lies in the plane of material symmetry x;x,, no restriction of this type applies a priori for
materials with cubic symmetry.

Since the matrix Cp, in Eqs. (24) is singular for any strain state, the search for the eigensolutions of this
system proceeds differently from the case of tetragonal symmetry, where special values had to be imposed to
either one of the Euler’s angles 0, and 05 to achieve collinearity.

Unless the Euler’s angles take special values, Cy, is of rank 2. Taking into account that cq3 = —(cq1 + ¢42),
¢s3 = —(cs1 +¢52) and cg3 = —(ce1 + cs2) (see Appendix), the eigensolutions of the system (24) are
e = ey = eqqp. Thus, unless the state of strain is isotropic, the Euler’s angles that render the strain energy
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density stationary must be such that the rank of Cy, is equal to one (or zero). By extracting any second-order
minor of Cp, (e.g., the algebraic complement of c¢g3, 443), one has

A3 = c41C50 — C42C51
=147, sin 20, sin 20, sin 6,[cos 20, cos 20, cos 20; — 1sin 26, cos 05 (1 + 3 cos 26,) sin 205], (90)
which vanishes if either 0; or 0, is equal to 0 or /2, or if the Euler’s angles are such that

4 cos 20,

tan 20, tan 205 = .
an =t tan = cos 0(1 4 3cos 20,)

o1

It is possible to show that any other minor of Cp, vanishes if Eq. (91) applies; provided that the Euler’s
angles fulfil Eq. (91), the rank of Cj, is equal to one. By inspection of the other minors of order two of Cpy,
one finds that other cases in which this matrix is at most of rank 1 are:

T s 3n
0, =0 or 3 0, (or63):z or (92)
i T 3n
0, = iE’ 0, (or 65) =7 o' 7 (93)
0, =0 V0,0 (94)

Some of these combinations of Euler’s angles also fulfil Eq. (91).

Once the conditions ensuring the possibility for the strain energy density to be stationary for non-
isotropic states of strain have been singled out, the search for the stationarity points proceeds similarly to
the procedure followed in Section 4. The combinations of Euler’s angles that make vanish all the minors
of order two of Cp, are subsequently substituted in Eq. (24), and the system is found to be fulfilled either:

(a) by special sets of angles that make the matrix of rank 0, regardless of the state of strain, or
(b) by combinations of the principal strains dependent on the Euler’s angles, if Cp, is of rank 1.

The former possibility, (a), corresponds to solutions referred to as ¢’ and a” in Section 4: either all the
principal strains are aligned with the material symmetry axes xj,x,x3 (a’-type solutions), or one of the
principal strains is aligned with one of the material symmetry axes, with the other two rotated of n/4 to
the remaining symmetry axes (a’-type solutions). Note that &'-type solutions found in Section 4.1 reduce to
a"-type solutions for cubic materials. Being the material axes mutually interchangeable, the strain energy
density takes the same value at any one of the &'-type solutions, that is (see Eq. (89))

W =Yénst + (én — én)s). (95)

The value of the strain energy density at any a”-type solution, with any principal strain direction x, aligned
with any one of the material symmetry axes xjxpxs, is

Waﬁ/ = %(élzﬁf + Cau Iy + (6’11 —C1p — 6‘44)(63 + %(ﬁ] — er)z)) (96)

with » = LI, III for i = 1,2, 3, respectively.

The latter possibility, (b), corresponds to combinations of the Euler’s angles that fulfil Eq. (91). Note
that, in particular, Eq. (91) is satisfied whenever 0, (or 05) is equal to nn/2 (n integer) and 0, = mn/4 (m
odd), etc. These cases generalize the solutions referred to as ” in Section 4, with one of the principal di-
rections of strain aligned with any bisector of a couple of coordinate axes. However, contrary to materials
with tetragonal symmetry or transversely isotropic solids, for cubic symmetry the stress and strain tensors
can be coaxial also when none of the principal directions of strain lies in any one of the material symmetry
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planes, provided that Eq. (91) applies. In this instance, solving any one of the three equations forming the
system (24) for one of the principal strains (say, eyy), one gets

1 — cos 20,

er + eq _3
1+3cos20,

e = 3 5

(61 — 61[) COS 203 (97)

Rearranging Egs. (91) and (97), it is possible to express the values of two of the Euler’s angles, at which the
stress and the strain tensor are collinear, in terms of the third angle and the given principal strains:

2 er + ey — 26111

cos20,=1—-= 98
2 3 e Sil’l2 63 + en cos? 93 — e ( )
tan 20, — e 0052 (‘)3 +en sin2 93 — (61 Sil’l2 93 +en COS2 93) 0052 92 — en Sil’l2 92 (99)

e (e; — eyr) cos 0, sin 20; ’

Eq. (98) shows that, if
ey —eén 1

<l 100
ej+en —2em | (100)

the Euler’s angle 0, defined by Eq. (98) exists for any value of 03, and so does 0, defined by Eq. (99). If the
principal strains do not fulfil the constraint (100), 0; cannot take arbitrary values; note, however, that for
any given strain state it is always possible to find values of 03 that give real values for 0, according to Eq.
(98), that is, b-type critical points.

It is interesting to note that, by computing the axial strain components along the coordinate axes
X1,%2,x3 accounting for Egs. (98) and (99), one gets

€ =€) =e¢€3 :%fl, (101)

which means that b-type solutions are characterized by equally strained material symmetry axes. Taking
Eq. (101) into account, from Eq. (89) it readily prompts out that the value of the strain energy density in
any b-type solution is

wh =W, +1a st =1ke + 261, — éwn) I + cuds). (102)

To summarize, it is possible to state that, for materials with cubic symmetry, the strain energy density is
stationary respect to the Euler’s angles either if at least one of the principal strain directions is aligned with
one of the material symmetry axes (and the other two are collinear with the remaining symmetry axes, or
bisect them), or if the principal strains are rotated to the material symmetry axes so as to make equal the
axial strains along them. These results were already established in Rovati and Taliercio (1991) through an
alternative approach.

6.1. Classification of the stationarity points

To order the values of the strain energy density for a cubic solid at the critical points, the values cor-
responding to any pair of stationarity points are subsequently compared. Consider first a’- and b-type
solutions and subtract Eq. (102) from Eq. (95):

Wa, — Wb = %&ll(fZ — %f%) = %&11((61 — 611)2 + (@H — 6111)2 + (em — 61)2). (103)

Thus, W< > W? for materials with d,, > 0, whereas W< < W? for materials with a;, < 0.
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As far as the comparison between «'- and a”-type solutions is concerned, referring to the results es-
tablished in Section 4.2 for materials with tetragonal symmetry, it is possible to state that W — W% >0
(resp. <0) for any i, if p(= ay1) > 0 (resp. <0).

Consider now the difference of the strain energy density associated with any a”-type solution (Eq. (96))
and with b-type solutions (Eq. (102)):

W —w = lay (ef +3(S1 - er)2> —laylst = San(3e, — 51), (104)

with 7= L IL 1T for i = 1,2,3, respectively. Thus, W% — W’ >0 (resp. <0) for any i, if (= d;;) >0
(resp. <0).

To summarize, it is possible to state that the extrema for the strain energy density of solids with cubic
symmetry always correspond to '-type or to b-type solutions, that is, to full collinearity or no collinearity
of the material axes x;, x,, x3 with the principal directions of strain, respectively. W< is an absolute maxi-
mum and W? is an absolute minimum for materials with d;; > 0; the opposite applies for materials with
a;; < 0. Solutions of a”-type, with only one of the principal strain directions aligned with any one of the
material symmetry axes, are just relative maxima or minima.
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Fig. 15. Cubic symmetry: plots of the strain energy density for aluminium (normalized to ;) versus the Euler’s angles 0,, 6, at 65 = n/7
and relevant contour plots.
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For the sake of illustration, in Fig. 15 the strain energy density of aluminum (Al) subjected to a state of
strain characterized by e; = 10, e;; = 5, e;p = —5, is plotted versus two of the Euler’s angles, 0; and 0,. The
third angle, 65, is given a constant value of ©/7. The elastic constants of this cubic material (in GPa, see
Landolt and Bornstein, 1992) are ¢;; = 108, ¢, = 62, é44 = 56.6, so that a;; = —10.6 < 0. The strain energy
density is normalized to W}, given by Eq. (31). With the values chosen for the principal strains, inequality
(100) applies, and b-type solutions exist for any 0;. The contour plots of the strain energy density are also
reported, with the points corresponding to any stationarity point marked out. Note that some points in the
surface representing W /W; correspond to partial stationarity with respect to ; and 6,, but not with respect
to 03.

By direct inspection of Fig. 15, one can immediately note that

wh>wE > we, (105)

which is consistent with a;; < 0.

7. Concluding remarks

With reference to linearly elastic anisotropic solids, the orientations of the material symmetry axes to the
principal directions of strain (or stress) corresponding to critical points for the strain energy density
function have been sought. First, the property of coaxiality that the stress and strain tensors meet when
these critical points are attained has been outlined. Then, on the basis of such a general property, all the
orientations corresponding to absolute and relative maxima and minima have been found for tetragonal
(6), hexagonal (5) and cubic material symmetries, in terms of triplets of Euler’s angles. For each of these
symmetry classes, the corresponding stationarity values of the energy density have been analytically
computed and compared each other.

In the case of tetragonal symmetry (Section 4), three classes of solutions have been found. The
first class is that identified by Cowin (1994), and is characterized by complete collinearity of the prin-
cipal directions of stress, strain, and material symmetry axes. In this class, stationarity points of the strain
energy density exist for any strain state. The second one is characterized by collinearity of only one of
the principal directions of strain with any one of the material symmetry axes lying in a particular plane of
elastic symmetry (plane I1, see Fig. 2). The stationarity points belonging to this class exist provided
that the given principal strains fulfil certain inequalities involving the elastic constants. Finally, in the
special case where the principal strains fulfil a linear constraint (depending on the elastic constants),
stationarity can be achieved simply with one of the principal directions of strain lying in the plane of
elastic symmetry I1, without any collinearity with material symmetry axes. The order of the strain
energy density values at the stationarity points is shown to depend on three material parameters, «, x’
and y.

The case of transverse isotropy (Section 5) has been studied as a special sub-case of tetragonal symmetry.
The presence of a plane of elastic isotropy II (i.e., of an axis of rotational symmetry) simplifies the dis-
cussion. Only two classes of critical points exist: one in which the axis of rotational symmetry coincides with
any one of the principal directions of strain; the other one, characterized by one of the principal directions
of strain lying in the plane I1. For transverse isotropy, only one material parameter, x, governs the order of
the values of the energy density at the stationarity points.

For both classes of solids considered above, the plane of elastic symmetry IT is found to contain always
at least one of the principal directions of strain.

Substantial differences emerge when the cubic symmetry is dealt with (Section 6). Beside the solutions
corresponding to complete collinearity, stationarity of the strain energy density can also be achieved, for
any state of strain, when none of the principal directions of strain (and stress) lies in any one of the elastic
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mirror symmetry planes. Only one material parameter, 7, rules the order of the values of the strain energy
density corresponding to the two classes of solutions identified.
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Appendix. Singularity of Ap4 for the cubic symmetry

The necessary condition for stationarity of the strain energy density is given by Eq. (32), and reads
det Ap, = 0. Ap, is the lower left square unsymmetric part of:

A= q:{ q". (106)
In the case of cubic symmetry, this expression can be written in symbolic form as
4= (qAA qAB) (2/1/1 0) (‘IA;A qu) (107)
434 43 0 0/)\45 4

Thus, the necessary condition for stationarity is

det Ay, = det(gpAuqt,) =0, (108)
where
Ay = diag(ai, dn,an) (109)

and matrices ¢, and ¢,, are given by Eqgs. (14) and (12) in terms of the Cartesian components Q;; of the
rotation tensor in three dimensions. By exploiting the matrix product in (108), the elements of the first row
of matrix Ap, turn out to be:

ay = V2a11(0210:10%, + 00000}, + 050:0%), (110)

a = V2411 (03,051 + 03,00 + 03,0%), (111)

ay = V201 (02103, + 0203, + 0503)- (112)
From the orthogonality condition QT Q = 1, the following expressions can be obtained:

05 =1-0 -0y, (113)

0h=1-0,-05,, (114)

0 =1-0h -0, (115)
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which, substituted into Eq. (112), easily furnish

agz = V211 {(00 031 + 0003 + 013033) — (02103108, + 000307, + 0130:.013)
— (05,051 + 03,00 + 03,0%3) }- (116)

By virtue of orthogonality QQ" = 1, the first term in round brackets in (116) vanishes, whereas the second
and third terms in brackets are equal to a4; and a4, respectively. Therefore,

ayz = —(6141 + a42). (117)

Repeating the same procedure for the second and third rows of matrix Ap,, the following equalities are
accordingly obtained:

asy = —(asi +asy), ag = —(ag + ae). (118)

Thus, in the cubic case, the third column of matrix A, is equal to minus the sum of the first two, and
consequently this shows that det A, is always equal to 0.
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