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Abstract

Homogeneous, anisotropic and linearly elastic solids, subjected to a given state of strain (or stress), are considered.

The problem dealt with consists in finding the mutual orientations of the principal directions of strain to the material

symmetry axes in order to make the strain energy density stationary. Such relative orientations are described through

three Euler�s angles. When the stationarity problem is formulated for the generally anisotropic solid, it is shown that the

necessary condition for stationarity demands for coaxiality of the stress and the strain tensors. From this feature, a

procedure which leads to closed form solutions is proposed. To this end, tetragonal and cubic symmetry classes, to-

gether with transverse isotropy, are carefully dealt with, and for each case all the sets of Euler�s angles corresponding to

critical points of the energy density are found and discussed. For these symmetries, three material parameters are then

defined, which play a crucial role in ordering the energy values corresponding to each solution.
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1. Introduction

Minimization of the strain energy density is of considerable significance when stiff structures or struc-
tured materials must be achieved for a given loading, whereas its maximization is an outstanding feature

when a large amount of energy absorption under impact loading is demanded. Contrary to isotropic solids,

in presence of elastic anisotropy the strain energy density changes when any material element is rotated to

the principal directions of stress or strain. Accordingly, the orientation of the material axes can be em-

ployed as design variable to achieve the desired maximum or minimum value of the strain energy density. In

designing living tissues, nature somehow employs this kind of strategy, and adjusts the microstructure of

the material (i.e., its anisotropy), to enhance the mechanical performances. On the other hand, the same
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idea is artificially adopted when some man-made materials are produced. Among these, fibrous composites

represent the most common example of materials intrinsically anisotropic and susceptible to be properly

designed for given purposes.

The aim of this paper is to rationalize the problem of finding the extrema for the strain energy density,
with reference to linear elastic solids in presence of material symmetries.

Referring to a linearly elastic anisotropic solid, defined by an elasticity tensor with components Cijhk,

subjected to a constant strain state characterized by given principal strains, this goal can be achieved by

answering to the following questions: (a) which conditions must be satisfied by the stress and the strain

fields to make the strain energy density stationary, and (b) which are explicitly the corresponding mutual

orientations of the strain and the elasticity tensors that satisfy these conditions?

The answer to the first question is partially known. The results obtained up to now, which will be briefly

reviewed later, concern essentially the determination of qualitative conditions to be satisfied by absolute
maxima and minima for the strain energy density, and the number of such critical points. The problem of

the explicit evaluation of the orientations corresponding to all the stationarity values of the strain energy

density has only partially been solved. On the last point is focused the main task of the present paper, where

for some classes of anisotropy (namely, tetragonal system, transverse isotropy and cubic symmetry) all the

orientations of the principal directions of strain to the material symmetry axes at the critical points are

found and discussed.

The main results on the subject appeared in the literature are reviewed in Section 2, whereas Section 3

deals with the general formulation of the problem. Use is made of a proper definition of the elasticity tensor
in six dimensions which, contrary to the classical Voigt�s representation, preserves the tensorial character of
the constitutive law. The mutual orientation of the principal directions of strain to the material symmetry

axes is then described through three Euler�s angles. This choice, despite a certain inherent formal com-

plexity of the equations governing the problem, turns out to be appropriate when the orientations corre-

sponding to stationary values of the energy density are sought explicitly. The general condition for

stationarity of the strain energy density is also revisited, and it is shown that critical points are characterized

by coaxiality of the stress and strain tensors. Such a feature is then at the origin of the solution procedure

proposed here, which consists in finding the Euler�s angles that render a certain system of linear equations
singular.

Explicit values of these angles are then found in Section 4, with reference to solids with tetragonal

symmetry. These results are then specialized in Section 5 to the case of transverse isotropy, and in Section 6

to the case of cubic symmetry.

The results obtained are then summarized in Section 7, where some concluding remarks are also made.
2. An account of the literature

Pioneering works where extreme values of the strain energy density in anisotropic bodies are sought are

those by Banichuk (1981, 1983). Here, the problem of simultaneously evaluating the most efficient shapes
for anisotropic rods in torsion and the orientation of the anisotropy axes which minimize the structural

compliance is dealt with. The problem of defining the local values of the elastic coefficients, with fixed

directions of material axes, which minimize the energy density is also considered in plane elasticity. These

results have been extended in Banichuk and Kobelev (1987) to the case of ideally elastic–plastic solids.

Anisotropic plates with variable elastic moduli and material axes orientation have been also studied by

Kartvelishvili and Kobelev (1984), referring to optimal design for compliance and natural vibrational

frequency.

Beside these structural formulations, the study of the best positioning of elastic symmetry planes in
three-dimensional orthotropic bodies for minimum potential energy of deformation has been carried out in
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a general way in Seregin and Troitskii (1981). In this work, through the application of the Lagrangian

multipliers method, it is shown that the solution is locally characterized by a mechanically meaningful

condition, that is, coaxiality of the stress and strain tensors. Contrary to isotropic elasticity, where the strain

and stress tensors are always coaxial, in anisotropic elasticity this feature is, in general, lost. The non-trivial
result obtained by Seregin and Troitskii emphasizes a requirement that must always be fulfilled when ex-

treme values of the global stiffness are sought; consequently, it should be assumed as a guidance for an

optimal spatial arrangement of the material symmetry axes.

Later, but independently, the same problem has been dealt with in Rovati and Taliercio (1991, 1993)

where orientations of the material symmetry axes which maximize or minimize the global elastic stiffness of

a generally anisotropic three-dimensional continuum are sought. Necessary stationarity conditions for the

strain energy density are directly computed, assuming the strain state to be given, and their mechanical

interpretation (that is, collinearity of principal directions of stress and strain) is highlighted. Some closed
form solutions for cubic and transversely isotropic materials are found, and a material parameter, re-

sponsible of the relative shear stiffness of the solid, is introduced. It is shown how two classes of solutions

can be defined according to its value: one, where stationarity of the strain energy density is accompanied by

full collinearity of principal directions of stress, strain and material axes; the other one, where this col-

linearity is only partially preserved.

Due to pertinence to practical applications, much effort has been devoted to two-dimensional solids. In

particular, the elastic problem previously described has been reformulated for plane elasticity in Sacchi

Landriani and Rovati (1991), and conditions for absolute maximum and minimum structural stiffness are
found; an extension to plates in bending is given as well. Careful investigations in this direction should be

mentioned, such as those given by Pedersen (1989), where it is found that the best orientations of the

material axes depend on a dimensionless material parameter, plus the ratio of the two principal strains.

Coaxiality of the material axes and the principal strain directions always corresponds to stationary values

for the energy density (trivial solutions); however, in some strain conditions, stationarity can also be

achieved at some non-trivial orientations. In addition to these considerations referred to any material point,

analyses are also carried out for the whole solid (Pedersen, 1990), through applications of sensitivity

analysis, finite element analysis, and optimization procedures. Homogenization techniques, coupled with
finite element analyses and design for optimal structural performances, have led to the very effective method

of topology optimization (see Eschenauer and Olhoff, 2001, and the references therein).

A modern formulation of the problem of finding the best orientations of the material symmetry axes in a

three-dimensional continuum is given by Banichuk (1996), where the application of spectral methods of

tensor analysis makes it possible to clarify general features of the problem itself, and to discuss some

qualitative properties. Further accounts on spectral decomposition of the anisotropic elasticity tensor can

be found in Sutcliffe (1992) and Theocaris and Sokolis (2000a,b). Banichuk deals with several problems,

such as minimization of the compliance functional, the dynamic stiffness and the distortion energy. These
problems are then generalized to the case of bodies consisting of several anisotropic phases; accordingly, the

medium is represented as a polycrystalline aggregate.

The problem of extremizing the strain energy density by varying the mutual orientation of a fixed stress

state to the material symmetry axes (regardless of the considered symmetry class) has also been developed

by Cowin (1994). After showing that the stress and strain tensors commute at the stationarity (or critical)

points of the strain energy, Cowin looks for absolute maxima and minima of the energy in a subset of

orientations at which the gradient of the strain energy density vanishes respect to a second-order ortho-

gonal tensor, representing the coordinate transformation. It is shown that �the symmetry coordinate system
of cubic symmetry is the only situation in linear anisotropic elasticity for which a strain energy density

extremum can exist for all stress states�. The stationarity conditions for materials with other symmetries

depend on the given stress state. In particular, the conditions for the energy extrema for transversely

isotropic and orthotropic solids are found for uniaxial stress states. In Vianello (1996a) and Sgarra and
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Vianello (1997a,b) attention is paid to showing the existence of rotations of the material axes with respect to

the principal directions of strain, at which the energy density is stationary. By means of Weierstrass� the-
orem the existence of at least two such rotations is proved, which parametrically depend on the strain tensor

for any material symmetry. At a first glance, this result seems to contradict the statement given in Cowin
(1994); nevertheless, the difference with Cowin�s formulation is that here the elastic symmetry is held fixed

for a specific strain state, whereas in Cowin (1994) a general state is considered. This difference is ex-

haustively clarified in Cowin (1997). The extension to finite anisotropic elasticity is tackled by Blume (1994)

and Vianello (1996b), where the properties of the extrema are shown to be the same as in the linear case.

Further developments in this direction concern the problem of extremizing the strain energy density, with

respect to both the orientation of the anisotropy axes and the type of material symmetry (Cowin and Yang,

2000), for a given, but arbitrary, stress state. This formulation reveals a strict connection with analogous

problems concerning the generation of optimal topologies (Eschenauer and Olhoff, 2001), where it is es-
sentially the microstructure of the solid that plays the role of design variable.

Finally, it is interesting to notice that the previously illustrated problems spontaneously arise not only in

the study of the behaviour of man-made materials, but also in the mechanics of living tissues. For instance,

Fyhrie and Carter (1986) develop a relationship between cancellous bone apparent density, trabecular

orientation and applied stress, assuming the bone to be an orthotropic, self-optimizing material. It is shown

that the trajectories of the material axes and the apparent density can be described by a unifying mini-

mization principle involving a quadratic functional, similar to the strain energy density, and a purely

quadratic Tsai-Wu failure criterion. The results predict the alignment of the material axes to the principal
stress directions, in agreement with the previously reviewed results. Mechanisms of local changes in an-

isotropic properties, that more efficiently allow the living bone to carry the loads, are shown in Cowin

(1987, 1995). These results suggest that the bone is designed by nature to have the greatest stiffness in

axial direction and the greatest impact load resistance in the transverse one. The intimate relationship

between trabecular architecture of cancellous bone and mechanics is also described by Odgaard et al.

(1997).
3. Problem formulation

The problem of finding critical points of the strain energy density function, in linearly elastic anisotropic

solids, is dealt with. In this problem, the local orientation of the anisotropy axes is assumed to be varying

from a point to another through the body, and it is conceived as variable of the problem itself. The solid is

supposed to be endowed with a positive definite strain energy. At first, no restriction on the type of elastic

anisotropy is made. In an orthogonal reference system z1z2z3, the constitutive law can be written in the form

of the generalized Hooke�s law:
Tij ¼ CijhkEhk; ð1Þ
where Tij and Ehk are the Cartesian components of the symmetric second-order stress and linearized strain

tensors, respectively. Cijhk are the components of the elasticity tensor of rank 4. From here onwards,

summation over repeated indices (here ranging from 1 to 3) is understood. The type of anisotropy of the

material is reflected by the symmetry group to which the elasticity tensor belongs (Smith and Rivlin, 1958;
Gurtin, 1972). Symmetry of the strain and stress tensors, along with the postulated existence of an energy

function, lead to the usual symmetries of the elasticity tensor:
Cijhk ¼ Cjihk ¼ Cijkh ¼ Chkij: ð2Þ
In the most general case, the elasticity tensor depends on 21 independent coefficients (triclinic system;
Gurtin, 1972): this is the case of complete anisotropy, and no restriction is placed on the elasticities Cijhk by
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any material symmetry property. Conversely, if the material possesses some planes or axes of elastic

symmetry, the number of independent elastic coefficients is accordingly reduced. Constraints imposed by

material symmetry on the elasticity tensor, classification of symmetry classes, and number of the different

types of anisotropy, are topics widely discussed in the literature (see, among others, Love, 1994; Hearmon,
1961; Gurtin, 1972; Ting, 1996; Forte and Vianello, 1996; Huo and Del Piero, 1991; Cowin and Mehrabadi,

1995; Chadwick et al., 2001). For any material symmetry, it is customary to define, at each point P of the

body, a �principal�, or �material�, orthogonal reference system x1x2x3 in which the elasticity tensor shows the

fewest number of independent non-vanishing components.

The relationship between the Cartesian components of the elasticity tensor in the global frame z1z2z3, and
those in the local material system x1x2x3, denoted by bCCmnpq, is given by the transformation law:
Cijhk ¼ QimQjnQhpQkq
bCCmnpq; ð3Þ
where Qij are the components of a proper orthogonal second-order tensor Q.

The anisotropy of the solid is supposed to be given. The state of strain at each point P of the solid is

characterized by the given values of the three principal strains and by the orthogonal principal strain di-
rections xIxIIxIII.

Accordingly, at each point P of the solid three Cartesian orthogonal systems of axes are defined: z1z2z3,
parallel to the global system of coordinates, which form a set of axes common to all points in the body;

x1x2x3, aligned with the material axes, which can vary point by point; and xIxIIxIII, the system of the

principal directions of strain.

When the material symmetry axes are locally rotated at any point in the body with respect to the fixed

system z1z2z3, the local orientations of the principal directions of strain change as well. Thus, any change in

the energy density
W ¼ 1
2
CijhkEijEhk ¼ 1

2
QimQjnQhpQkq

bCCmnpqEijEhk ð4Þ
is due to a change in the mutual orientation between material axes x1x2x3 and principal axes of strain

xIxIIxIII. Accordingly, in Eq. (4) the Qij must be understood as components of a proper orthogonal tensor

that rotates the material axes with respect to the principal directions of strain.
3.1. Formulation in the six-dimensional space

It is expedient to replace the three-dimensional formulation adopted so far with a suitable formulation of

the constitutive law in the six-dimensional space. Different possible notational conventions can be found in
the literature to express the stress–strain relationship (Walpole, 1984; Cowin and Mehrabadi, 1987; Me-

hrabadi and Cowin, 1990; Nadeau and Ferrari, 1998; Ting, 1996; Helnwein, 2001). Here, the description

adopted is given by the following linear transformation is six dimensions (Walpole, 1984; Rychlewski, 1984;

Cowin and Mehrabadi, 1992):
t ¼ Ce; ð5Þ
where the two arrays t and e gather the six independent stress and strain components, respectively:
t ¼ ð T11 T22 T33
ffiffiffi
2

p
T23

ffiffiffi
2

p
T31

ffiffiffi
2

p
T12 Þ

T ð6Þ
e ¼ ðE11 E22 E33

ffiffiffi
2

p
E23

ffiffiffi
2

p
E31

ffiffiffi
2

p
E12 Þ

T
: ð7Þ
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The elasticity tensor is then consistently transformed into the 6� 6 matrix, C :
C ¼

C1111 C1122 C1133

ffiffiffi
2

p
C1123

ffiffiffi
2

p
C1131

ffiffiffi
2

p
C1112

C1122 C2222 C2233

ffiffiffi
2

p
C2223

ffiffiffi
2

p
C2231

ffiffiffi
2

p
C2212

C1133 C2233 C3333

ffiffiffi
2

p
C3323

ffiffiffi
2

p
C3331

ffiffiffi
2

p
C3312ffiffiffi

2
p

C1123

ffiffiffi
2

p
C2223

ffiffiffi
2

p
C3323 2C2323 2C2331 2C2312ffiffiffi

2
p

C1131

ffiffiffi
2

p
C2231

ffiffiffi
2

p
C3331 2C2331 2C3131 2C3112ffiffiffi

2
p

C1112

ffiffiffi
2

p
C2212

ffiffiffi
2

p
C3312 2C2312 2C3112 2C1212

0BBBBBBBB@

1CCCCCCCCA
: ð8Þ
According to this representation, the stress and strain tensors are mapped into the six-dimensional space in

the same manner, contrary to the more frequently adopted Voigt�s notation where only the shearing strains

are affected by a multiplicative factor 2 (Love, 1994; Lekhnitskii, 1981; Sirotin and Chaskolka€ııa, 1984;
Mehrabadi and Cowin, 1990). The advantage of the Voigt�s choice is that the components of the strain
vector have the physical meaning of engineering strains. It has been proved by Mehrabadi and Cowin

(1990) that the 6� 6 matrix in (5) contains the components of a second-order tensor in six dimensions,

whereas this tensorial character is lost in the Voigt�s notation (Nye, 1957; Hearmon, 1961; Fedorov, 1968;

Ting, 1996).

For the sake of conciseness, vector and tensor components in six dimensions will be denoted by low-

ercase letters, and the usual contraction of indices, which replaces any pair of indices with a single index

(i.e., 11¼ 1, 22¼ 2, 33¼ 3, 23¼ 32¼ 4, 31¼ 13¼ 5 and 12¼ 21¼ 6) is assumed. In such a way the matrix

representation (5) can be explicitly written as
t1
t2
t3
t4
t5
t6

0BBBBBB@

1CCCCCCA ¼

c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66

0BBBBBB@

1CCCCCCA

e1
e2
e3
e4
e5
e6

0BBBBBB@

1CCCCCCA: ð9Þ
The components of the elasticity tensor in six-dimensions referred to the material symmetry axes will be

denoted by ĉcij ði; j ¼ 1; . . . ; 6Þ and collected into the matrix bCC . To express the components of the second-

rank elasticity tensor in any reference frame, cij, in terms of the elastic constants ĉcij, a suitable rotation

tensor q in six dimensions must be defined, such that
cij ¼ qimqjnĉcmn: ð10Þ

This equation represents the six-dimensional counterpart of Eq. (3). The definition of the orthogonal tensor

q can be found in Mehrabadi and Cowin (1990), where its matrix representation is given as
q ¼ qAA qAB
qBA qBB

� �
ð11Þ
with
qAA ¼
Q2

11 Q2
12 Q2

13

Q2
21 Q2

22 Q2
23

Q2
31 Q2

32 Q2
33

0B@
1CA ð12Þ

qAB ¼

ffiffiffi
2

p
Q12Q13

ffiffiffi
2

p
Q13Q11

ffiffiffi
2

p
Q11Q12ffiffiffi

2
p

Q22Q23

ffiffiffi
2

p
Q23Q21

ffiffiffi
2

p
Q21Q22ffiffiffi

2
p

Q32Q33

ffiffiffi
2

p
Q33Q31

ffiffiffi
2

p
Q31Q32

0@ 1A ð13Þ
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qBA ¼

ffiffiffi
2

p
Q21Q31

ffiffiffi
2

p
Q22Q32

ffiffiffi
2

p
Q23Q33ffiffiffi

2
p

Q31Q11

ffiffiffi
2

p
Q32Q12

ffiffiffi
2

p
Q33Q13ffiffiffi

2
p

Q11Q21

ffiffiffi
2

p
Q12Q22

ffiffiffi
2

p
Q13Q23

0@ 1A ð14Þ

qBB ¼
Q22Q33 þ Q23Q32 Q21Q33 þ Q23Q31 Q21Q32 þ Q22Q31

Q32Q13 þ Q33Q12 Q31Q13 þ Q33Q11 Q31Q12 þ Q32Q11

Q12Q23 þ Q13Q22 Q11Q23 þ Q13Q21 Q11Q22 þ Q12Q21

0@ 1A: ð15Þ
When the problem is written in the six-dimensional space, the energy density function (4) takes the form:
W ¼ 1
2
cijeiej ¼ 1

2
qimqjnĉcmneiej ð16Þ
with i; j ¼ 1; 2; . . . ; 6.

3.2. Condition for critical points of strain energy density

In this section the necessary condition for stationarity of the strain energy density is first briefly reviewed.

This condition can be obtained in several ways (Seregin and Troitskii, 1981; Rovati and Taliercio, 1991,

1993; Cowin, 1994; Banichuk, 1996). Here it is preferred to recall the direct approach that makes use of the

formulation in three dimensions (Cowin, 1994), where the physical meaning of the stationarity condition

turns out in explicit form.
The objective stated in the previous section is to find stationarity points for the strain energy density

function (4), according to the orthogonality constraint on tensor Q, which, in terms of components, reads
QikQjk ¼ dij ð17Þ
where dij is the Kronecker�s delta. By means of the Lagrangian multipliers method, this constrained

problem can be reformulated as an unconstrained one, consisting into the search for the stationarity of the

augmented (or Lagrangian) function L (Cowin, 1994), defined as
LðQij;KijÞ ¼ 1
2
CijhkEijEhk � KijðQikQjk � dijÞ; ð18Þ
where Kij are the components of a symmetric tensor K of rank 2. Stationarity of function L with respect to

the Lagrangian multipliers Kij restores the constraint (17), whereas stationarity with respect to variables Qij,
that is, with respect to the local orientation of the anisotropy axes, is given by
oL

oQrs
¼ 2ðbCCmspqQimQhpQkqEirEhk � KrjQjsÞ ¼ 0; ð19Þ
where minor and major symmetries (2) of the elasticity tensor have been taken into account. After some

algebraic manipulations, it is not difficult to show that
TikEir ¼ Krk; ð20Þ

which, by virtue of the symmetry of tensors T, E and K allows one to write
TE ¼ ET: ð21Þ

The commutativity of this product implies that the two tensors T and E are coaxial. Thus, the stationarity

points of the strain energy density correspond to those orientations of the principal directions of strain to

the material symmetry axes which make the principal directions of strain collinear with the principal

directions of stress. Two second-order tensors are coaxial if they have a common triad of orthogonal

eigenvectors. In isotropic elasticity, tensors T and E are always coaxial; this does not apply to anisotropic
solids unless special conditions are fulfilled, which will be explicitly derived later for some classes of elastic

symmetries.
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This coaxiality requirement is the starting point for the solution procedure leading to the analytical

determination of the orientation of the anisotropy axes to the principal directions of strain here proposed.

When the strain energy density is stationary, at each point P of the anisotropic body and in the Cartesian

coordinate system xIxIIxIII of the principal directions of stress and strain, condition (21) implies
tI
tII
tIII
0

0

0

0BBBBBB@

1CCCCCCA ¼

c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66

0BBBBBB@

1CCCCCCA
eI
eII
eIII
0

0

0

0BBBBBB@

1CCCCCCA ð22Þ
which can be written, for notational purposes only, in concise form as
tp
0

� �
¼ CAA CAB

CBA CBB

� �
ep
0

� �
ð23Þ
(with CBA ¼ CT
AB). Therefore, coaxiality of the stress and strain tensors can be expressed as
CBAep ¼ 0 )
c14eI þ c24eII þ c34eIII ¼ 0;
c15eI þ c25eII þ c35eIII ¼ 0;
c16eI þ c26eII þ c36eIII ¼ 0:

8<: ð24Þ
Clearly, system (24) is identically satisfied for any value of the principal strains eI, eII, eIII if all the coef-
ficients c14; c24; . . . ; c36 simultaneously vanish. This occurrence may happen only for those material sym-

metry classes for which at least a material coordinate system can be found where all the entries of submatrix

CBA vanish (Cowin, 1994, 1997), provided that, at the same time, these material axes are aligned with

principal directions of stress and strain. These elastic symmetries correspond to the cubic system (char-

acterized by 3 elastic coefficients), hexagonal(5) system (transverse isotropy, 5 coefficients), tetragonal(6)

system (6 coefficients) and orthorombic symmetry (9 coefficients) (see Gurtin, 1972). For the other elastic

symmetries, i.e. hexagonal (with 6 and 7 elastic coefficients), tetragonal (7 coefficients), monoclinic (13

coefficients) and triclinic (complete anisotropy, 21 coefficients), in any reference system the submatrix CBA is
different from the null matrix (Gurtin, 1972). Therefore, for such symmetries, no particular reference frame

exists in which system (24) can be satisfied for any non-vanishing value of the principal strains. Eqs. (24)

show that, for those elastic symmetries such that CBA ¼ 0 in some coordinate system, stationarity of the

energy can be achieved, in particular, for simultaneous coaxiality of principal directions of stress, strain and

material symmetry axes. This is the special case considered by Cowin (1994). In the next sections it will be

shown that coaxiality can be achieved under more general conditions.

It should be noticed that the necessary and sufficient condition under which the linear system (24) admits

non-trivial solutions reads
detCBA ¼
c14 c24 c34
c15 c25 c35
c16 c26 c36

������
������ ¼ 0: ð25Þ
Thus, coaxiality of the stress and the strain tensors, and hence stationarity of the elastic energy density, is

obtained when the equations of system (24) are linearly dependent.

If the Cartesian components of rotation are directly employed to describe the mutual orientation of the

strain and the elasticity tensors, the orthogonality condition QQT ¼ 1must be explicitly taken into account.

This constraint makes computations heavy if closed form solutions are sought. Therefore it is preferable to

assume as variables three independent unconstrained parameters, namely, three Euler�s angles. The Euler�s
angles adopted here are visualized in Fig. 1. These angles characterize any finite rotation of xI; xII; xIII to
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x1; x2; x3 as a sequence of three elementary rotations: the first one about x3, by an angle h1, is followed by a

rotation about xI (in its new orientation) by an angle h2; the third rotation is about xIII (in its final ori-

entation) by an angle h3 (Lurie, 2002).

Once the Euler�s angles have been defined, the matrix representation of the proper orthogonal tensor Q
reads
c1c3 � s1c2s3 s1c3 þ c1c2s3 s2s3
�c1s3 � s1c2c3 �s1s3 þ c1c2c3 s2c3

s1s2 �c1s2 c2

0@ 1A; ð26Þ
where the shorthand notations si ¼ sin hi and ci ¼ cos hi (i ¼ 1; 2; 3) have been adopted. It must be noticed
that, for the purposes of this work, the directions in which the axes of the reference systems xIxIIxIII and
x1x2x3 point is immaterial for the characterization of their relative orientation. Therefore, it is sufficient to

allow the Euler�s angles h1, h2, h3 to vary between 0 and p.
By expressing the elastic coefficients cij in (24) as functions of the Euler�s angles h1, h2, h3 (through Eq.

(10), definition (26) and the elements of tensor q given by Eqs. (12)–(15)), the condition detCBA ¼ 0 can be

seen as a constraint on the values of the Euler�s angles that allow the stress and strain tensors to be coaxial.

The principal strains eI, eII, eIII compatible with such orientations can then be obtained as the eigensolu-

tions of system (24) for any set of Euler�s angles such that detCBA ¼ 0.
In this way, it is also possible to find those local orientations of the symmetry axes corresponding to

critical values of the strain energy density, both for any strain state and for particular values of the principal

strains.

Condition (25) can be rewritten in a slightly different form if one considers that any change in the strain

energy density, associated with any rotation of the principal strain axes to the material axes, is due to the

deviation from an isotropic term in the constitutive law of the material. From this point of view, the matrixbCC can be decomposed as the sum of an isotropic part bII and an anisotropic part bAA:
bCC ¼ bII þ bAA: ð27Þ

By means of the rotation matrix q, and taking into account that the isotropic part is unaffected by rotations

(i.e., I ¼ qbII qT ¼ bII ), the decomposition (27) can be rewritten in any reference frame as
C ¼ I þ qbAAqT ¼ I þ A: ð28Þ

Consequently, it turns out that the strain energy density is the sum of an isotropic part WI and an aniso-

tropic contribution WA, and reads
W ¼ 1
2
ðe � CeÞ ¼ 1

2
½e � ðI þ AÞe� ¼ WI þ WA; ð29Þ
where the dot denotes the usual inner product. Note that, in general, WI and WA cannot be individually
interpreted as strain energy density functions: the decomposition (29) is introduced to confine in WA the

dependence of the strain energy density on the Euler�s angles. The choice of the isotropic term bII (and
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consequently, of the anisotropic part bAA) in the decomposition (27) is somehow arbitrary. In any reference

frame, the isotropic term adopted in the next sections is defined, on the basis of computational convenience,

as
I ¼

ĉc13 þ ĉc44 ĉc13 ĉc13 0 0 0

ĉc13 ĉc13 þ ĉc44 ĉc13 0 0 0

ĉc13 ĉc13 ĉc13 þ ĉc44 0 0 0
0 0 0 ĉc44 0 0

0 0 0 0 ĉc44 0

0 0 0 0 0 ĉc44

0BBBBBB@

1CCCCCCA: ð30Þ
With this choice, the term WI in (29) reads
WI ¼ 1
2
ðĉc13I2

1 þ ĉc44I2Þ ð31Þ
with I1 ¼ trE and I2 ¼ trE2.

Finally, note that, by means of (27), condition (25) becomes detCBA ¼ detðIBA þ ABAÞ ¼ 0, where the
submatrices IBA and ABA are defined similarly to CBA in (23), and IBA ¼ 0 in any reference system. Thus,

condition (25) can be rewritten as
detABA ¼
a14 a24 a34
a15 a25 a35
a16 a26 a36

������
������ ¼ 0: ð32Þ
Condition (32) is then adopted in the next sections with reference to some classes of anisotropic solids, for

which all the solutions in terms of Euler�s angles are found explicitly. The corresponding values of the strain

energy density are also computed and ordered.
4. Tetragonal symmetry

Solids pertaining to the tetragonal system are characterized by the existence of five planes of elastic

mirror symmetry; the normals to four of the planes (ai, i ¼ 1; 2; 3; 4) all lie in the fifth plane of symmetry,P,
normal to a5, and make angles of p=4 with respect to one another (Cowin and Mehrabadi, 1995). The

normals to three of the planes of symmetry are coordinate axes, x1, x2, x3 (see Fig. 2). In linear elasticity, the
Fig. 2. Planes of elastic mirror symmetry for the tetragonal(6) system.
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behaviour of these materials is defined by six independent stiffnesses. Referring to the coordinate system

x1x2x3, the stiffness matrix of the material reads
bCC ¼

ĉc11 ĉc12 ĉc13 0 0 0

ĉc12 ĉc11 ĉc13 0 0 0

ĉc13 ĉc13 ĉc33 0 0 0

0 0 0 ĉc44 0 0

0 0 0 0 ĉc44 0
0 0 0 0 0 ĉc66

0BBBBBB@

1CCCCCCA: ð33Þ
In this class of material symmetry fall, as special cases, transversely isotropic materials (if ĉc66 ¼ ĉc11 � ĉc12),
with five independent stiffnesses, and cubic materials (if ĉc11 ¼ ĉc33, ĉc12 ¼ ĉc13 and ĉc44 ¼ ĉc66), with three in-

dependent stiffnesses. These sub-cases will be dealt with in Sections 5 and 6, respectively.

Note that the material axes x1 and x2 are physically indistinguishable. In general, the elastic properties of

a tetragonal solid in the planes of symmetry orthogonal to a1 and a3 (see Fig. 2) differ from those in the

planes orthogonal to a2 and a4, except for the case of transversely isotropic materials. The intersections of
the planes normal to a2 and a4 with the plane normal to a5 will be denoted by x01 and x02, and form another

pair of physically indistinguishable material symmetry axes, different from x1 and x2.
According to Eqs. (27) and (30), the matrix bAA can be written as
bAA ¼

ĉc11 � ĉc13 � ĉc44 ĉc12 � ĉc13 0 0 0 0

ĉc12 � ĉc13 ĉc11 � ĉc13 � ĉc44 0 0 0 0

0 0 ĉc33 � ĉc13 � ĉc44 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 ĉc66 � ĉc44

0BBBBBB@

1CCCCCCA

¼

âa11 âa12 0 0 0 0

âa12 âa11 0 0 0 0

0 0 âa33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 âa66

0BBBBBB@

1CCCCCCA: ð34Þ
Accordingly, the anisotropic contribution to the strain energy density W (see Eq. (29)) can be expressed as
WA ¼ 1
2
½âa11ðe21 þ e22Þ þ âa33e23 þ 2âa12e1e2 þ âa66e26�: ð35Þ
4.1. Critical points of the strain energy density

To ensure coaxiality of the stress and the strain tensors at any point of a body with tetragonal elastic

symmetry, the condition (32), i.e., detCBA ¼ detABA ¼ 0, must be fulfilled, as pointed out in the preceding

section. Explicitly, this conditions reads
� 1

4
ffiffiffi
2

p ðâa11 � âa12Þðâa11 þ âa12 � âa33Þâa66 sin2 h2 sin
2 2h2 sin

2 2h3 ¼ 0: ð36Þ
Apparently, from this equation it can be seen that particular materials exist, whose elastic constants are

such that detðABAÞ vanishes for any orientation of the symmetry axes to the principal directions of strain.
This is the case, for instance, with cubic materials: this particular situation will be carefully studied in

Section 6. Thus, the necessary condition to achieve coaxiality of stresses and strains is that at least one of
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the Euler�s angles h2 and h3 be equal either to 0 or p=2. This means that at least one of the principal

directions of strain must lie in the plane x1x2: namely, this conditions applies for xI if h3 ¼ 0, for xII if

h3 ¼ p=2, and for xIII if h2 ¼ p=2 (refer to Fig. 1). If h2 ¼ 0, both xI and xII lie in the plane x1x2.
Consider, for instance, the case where h3 ¼ 0. The sets of (linearly dependent) Eqs. (24), expressed in

terms of coefficients âaij, which have to be fulfilled to ensure coaxiality of the stress and the strain tensors

take the form:
½2aeI þ ðb� 4âa33ÞðeII þ eIIIÞ þ ðbþ 4âa33ÞðeII � eIIIÞ cos 2h2 þ c cos 4h1f ðh2Þ� sin 2h28
ffiffi
2

p ¼ 0;

cf ðh2Þ sin 4h1 sin h2
4
ffiffi
2

p ¼ 0;

cf ðh2Þ sin 4h1 cos h2
4
ffiffi
2

p ¼ 0;

8><>: ð37Þ
where the following material coefficients have been defined:
a ¼ âa11 þ 3âa12 � âa66; ð38Þ
b ¼ 3âa11 þ âa12 þ âa66; ð39Þ
c ¼ âa11 � âa12 � âa66; ð40Þ
together with the function
f ðh2Þ ¼ �2eI þ eII þ eIII þ ðeII � eIIIÞ cos 2h2: ð41Þ
It is worth noting that the material parameter c can be expressed as
c ¼ 2ðĉc11 � c011Þ; ð42Þ

where
c011 ¼ 1
2
ðĉc11 þ ĉc12 þ ĉc66Þ ð43Þ
is the axial elasticity coefficient along x01. Thus, if c > 0 (resp., c < 0) the material is axially stiffer (resp.,

more flexible) along x1 than along x01.
Assuming the principal strains to be all distinct, the system (37) can be fulfilled in the following cases:

(a) h1 ¼ n p
4
(n ¼ 0; 1; 2; 3) and h2 ¼ 0 or p

2
.

(b) h1 ¼ n p
4
and h2 (6¼ 0; p=2) is such that the first equation in (37) is fulfilled, i.e., if n is even:
cos 2h2 ¼
�2âa12eI þ ðâa33 � âa11ÞðeII þ eIIIÞ

jðeII � eIIIÞ
ð44Þ
with
j ¼ âa11 þ âa33 ¼ ĉc11 þ ĉc33 � 2ðĉc13 þ ĉc44Þ; ð45Þ

or, if n is odd:
cos 2h2 ¼
�2a012eI þ ða033 � a011ÞðeII þ eIIIÞ

j0ðeIII � eIIÞ
ð46Þ
with
j0 ¼ a011 þ a033 ¼ 1
2
ðĉc11 þ ĉc12 þ ĉc66Þ þ ĉc33 � 2ðĉc13 þ ĉc44Þ; ð47Þ
or alternatively
j0 ¼ j� c
2
: ð48Þ
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The coefficients a0ij are the components of A in the Cartesian reference frame x01x
0
2x3 rotated of p=4 about

x3 respect to the system x1x2x3, and are given by
a011 ¼ 1
2
ðâa11 þ âa12 þ âa66Þ; a012 ¼ 1

2
ðâa11 þ âa12 � âa66Þ; a033 ¼ âa33: ð49Þ
(c) If h1 and h2 do not take any of the values listed in cases (a) and (b), the homogeneous system ABAep ¼ 0

has rank 2: therefore, the principal strains for which collinearity of the stress and the strain tensors can

be achieved are the eigensolutions of this system, and read
eII ¼
1� d sin2 h2

cos 2h2
eI; eIII ¼ � 1� d cos2 h2

cos 2h2
eI; ð50Þ
with
d ¼ 1þ âa11 þ âa12
âa33

: ð51Þ
These expressions can be easily combined to obtain a relationship involving the three principal strains,

which ensures collinearity of the stress and the strain tensors, and reads
eII þ eIII ¼ deI: ð52Þ

When the principal strains fulfil this linear constraint, cos 2h2 can be expressed as
cos 2h2 ¼
2eI � eII � eIII

eII � eIII
; ð53Þ
so that f ðh2Þ ¼ 0 and Eqs. (37) are fulfilled for any value of h1, provided that the angle defined by Eq.
(53) exists, i.e., if
eII þ eIII
eII � eIII

���� ����6 d
2� d

���� ����: ð54Þ
A similar discussion can be made when either xII or xIII lies in the plane x1x2.
To summarize, three different situations can be encountered if the stress and the strain tensors are co-

axial, corresponding to the cases listed above, namely:

(a) all the principal directions of strain are aligned with three of the normals to planes of material symme-

try;

(b) one of the principal directions of strain is aligned with any one of the normals to the planes of material

symmetry rotated of p=4 one to each other about x3, ai, i ¼ 1; 2; 3; 4 (i.e., is aligned with either one of

the axes x1, x01, x2, x
0
2);

(c) one of the principal directions of strain lies in the plane P orthogonal to a5.

Note that a-type solutions are possible for any given state of strain, whereas b- and c-type solutions exist

only if the principal strains fulfil certain constraints. Solutions of type b require the angle h2, defined by Eq.

(44) or Eq. (46) (or by the corresponding angle that characterizes solutions with xII or xIII lying in the plane

x1x2) to exist: this is possible only in a certain region of the space of the principal strains ðeI; eII; eIIIÞ which
will be studied later. Solutions of type c exist only if the principal strains fulfil the linear constraint (52) (or

the equivalent ones, that characterize the solutions with xII or xIII lying in the plane x1x2).
Note also that, in turn, the cases a and b can be split into the following sub-cases:

(a0) and (b0), where at least one of the principal directions of strain is aligned with a1 or a3 (i.e., with x1
or x2);
(a00) and (b00), where at least one of the principal directions of strain is aligned with a2 or a4 (i.e., with x01
or x02).



Table 1

Euler�s angles and orientations of the principal strain directions at the critical points of the strain energy density for tetragonal solids

Sol. type xI xII xIII h1 h2 h3

a01 x3 x1 or x2 x1 or x2 p
2

p
2

p
2

a02 x1 or x2 x3 x1 or x2 0 p
2

0

a03 x1 or x2 x1 or x2 x3 0 0 0

a001 x3 x01 or x02 x01 or x02
p
4
or 3p

4
p
2

p
2

a002 x01 or x02 x3 x01 or x02
p
4
or 3 p

4
p
2

0

a003 x01 or x02 x01 or x02 x3 �h3 þ p
4
or þ 3p

4
0 Any

b01 x1 or x2 2 ðx1 or x2; x3Þ 2 ðx1 or x2; x3Þ 0 or p
2

hb0
1

0

b02 2 ðx1 or x2; x3Þ x1 or x2 2 ðx1 or x2; x3Þ 0 or p
2

hb00
2

p
2

b03 2 ðx1 or x2; x3Þ 2 ðx1 or x2; x3Þ x1 or x2 0 or p
2

p
2

hb0
3

b001 x01 or x02 2 ðx01 or x02; x3Þ 2 ðx01 or x02; x3Þ p
4
or 3p

4
hb0

1
0

b002 2 ðx01 or x02; x3Þ x01 or x02 2 ðx01 or x02; x3Þ p
4
or 3p

4
hb00

2

p
2

b003 2 ðx01 or x02; x3Þ 2 ðx01 or x02; x3Þ x01 or x02
p
4
or 3p

4
p
2

hb00
3

c1 2 ðx1; x2Þ Any Any Any hc1 0

c2 Any 2 ðx1; x2Þ Any Any hc2
p
2

c3 Any Any 2 ðx1; x2Þ Any p
2

hc3
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All the situations listed above are summarized in Table 1, where the values of the Euler�s angles and the

orientations of the principal strain directions to the material symmetry axes are given. Note that equivalent

choices for the values of the Euler�s angles other than those listed in Table 1, leading to the same physical

orientations of the axes, can be made; here, they are disregarded for the sake of conciseness.
The values of the angles hb0i , hb00i

, hci (i ¼ 1; 2; 3) in the last two columns of Table 1 will be explictly given

later.

The solutions of type a0, characterized by full collinearity of principal directions of strain and coordinate

axes, are depicted in Fig. 3. The solutions of type a00 correspond to collinearity of two of the principal

directions of strain with the material symmetry axes x01, x
0
2 and are shown in Fig. 4.
Fig. 3. Full collinearity of the principal directions of strain (dashed lines) and the coordinate axes (solid lines).

Fig. 4. Collinearity of two of the principal directions of strain (dashed lines) and the material symmetry axes x01, x
0
2 (solid lines).



Fig. 5. Collinearity of one of the principal directions of strain (dashed lines) and one of the material symmetry axes (solid lines).
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Fig. 5 shows the orientations of the principal directions of strain for solutions of type b0. These solutions
are characterized by collinearity of only one of the principal directions of strain with either x1 or x2. The
plane formed by the other two principal directions of strain contains the material axis x3. The angles that

one of these directions makes to x3, indicated by hb0
1
, hb0

2
and hb0

3
in Table 1, are such that:
cos 2hb0
1
¼ �2âa12eI þ ðâa33 � âa11ÞðeII þ eIIIÞ

jðeII � eIIIÞ
; ð55Þ

cos 2hb0
2
¼ �2âa12eII þ ðâa33 � âa11ÞðeI þ eIIIÞ

jðeI � eIIIÞ
; ð56Þ

cos 2hb0
3
¼ �2âa12eIII þ ðâa33 � âa11ÞðeI þ eIIÞ

jðeI � eIIÞ
: ð57Þ
Whereas stationarity points of type a0 and a00 for the strain energy density exist for any given strain state,

stationarity points of type b0 exist provided that the Euler�s angles hb0i (i ¼ 1; 2; 3), given by Eqs. (55)–(57),
can actually be defined. Their existence is conditioned by both the local state of strain and the elastic

properties of the material. Referring, for the sake of illustration, to solution b01, the following inequalities

must be fulfilled:
�16
�2âa12eI þ ðâa33 � âa11ÞðeII þ eIIIÞ

jðeII � eIIIÞ
6 1: ð58Þ
These inequalities define a double-wedge shaped region in the plane (eII=eI; eIII=eI), which is qualitatively

plotted in Fig. 6, for a material with given elastic constants, together with the analogous admissible regions
for cases b02 and b03. Note that the regions in which the three b0-type solutions are individually possible

mutually intersect and do not cover the entire plane of normalized strains. This means that, according to

the strain state, of the b0-type solutions either all can exist, or only some of them, or even none.

Solutions of type b00 are characterized by collinearity of one of the principal directions of strain with

either x01 or x
0
2 (see Fig. 7). The Euler�s angles defining these situations (hb00i , i ¼ 1; 2; 3, see Table 1) can be

obtained from case b0 by replacing the components âaij with their homologous a0ij in the reference frame

x01x
0
2x3. Explicitly, these angles are such that:
cos 2hb00
1
¼ �2a012eI þ ða033 � a011ÞðeII þ eIIIÞ

j0ðeII � eIIIÞ
; ð59Þ

cos 2hb00
2
¼ �2a012eII þ ða033 � a011ÞðeI þ eIIIÞ

j0ðeI � eIIIÞ
; ð60Þ

cos 2hb00
3
¼ �2a012eIII þ ða033 � a011ÞðeI þ eIIÞ

j0ðeI � eIIÞ
: ð61Þ



Fig. 6. Regions in the plane of the normalized principal strains ðeII=eI; eIII=eIÞ where b0-type solutions exist (dashed areas). Case of

Ca2Sr(C2H5CO2)6: 2âa12=j ¼ �0:7405, ðâa33 � âa11Þ=j ¼ 0:4747.

Fig. 7. Collinearity of one of the principal directions of strain (dashed lines) and one of the axes x01, x
0
2 (solid lines).
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The considerations previously made regarding the existence of the b0-type solutions apply also for b00-type
solutions. These solutions exist provided that the point representative of the strain state, in the plane

(eII=eI; eIII=eI), falls within double-wedge shaped regions, similar to those shown in Fig. 6 for b0-type so-
lutions. For example, the inequalities defining the region in which solution b001 exists can be obtained by

replacing the âaij with the homologous a0ij in inequalities (58).

Finally, c-type solutions correspond to critical points of the strain energy density at which none of the

principal strain directions is aligned with any one of the material symmetry axes, but one of these directions



Fig. 8. Solutions characterized by one of the principal directions of strain (dashed lines) lying in the material symmetry plane (x1; x2),
rotated of an arbitrary angle.
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lies in the plane P ¼ ðx1; x2Þ (see Fig. 8). Provided that the principal strains fulfil particular linear con-
straints, the strain energy density turns out to be stationary for any value of h1. The values of the Euler�s
angles hci , i ¼ 1; 2; 3 (see Table 1), are such that:
cos 2hc1 ¼
2eI � eII � eIII

eII � eIII
with deI ¼ eII þ eIII; ð62Þ

cos 2hc2 ¼
2eII � eIII � eI

eI � eIII
with deII ¼ eIII þ eI; ð63Þ

cos 2hc3 ¼
2eIII � eI � eII

eI � eII
with deIII ¼ eI þ eII: ð64Þ
Implicitly, the angles defined by Eqs. (62)–(64) are assumed to exist, i.e., the principal strains must fulfil

inequalities similar to (54).

The linear constraints to be fulfilled by the principal strains in order to get c-type solutions can be

represented by straight lines in the plane ðeII=eI; eIII=eIÞ. For sake of illustration, in Fig. 9 the line corre-
sponding to solution c1 is plotted for a particular material, together with the regions where the b01- and b001-
type solutions, with the same principal strain lying in the plane x1x2, exist.
4.2. Classification of the stationarity points

Once the stationarity points for the strain energy density have been identified, the relevant values of the

energy are now computed and a classification of the stationarity points is made, according to the given

values of the principal strains and the elastic constants.
The values of the strain energy density W at each critical point are listed in Table 2 in compact form,

with r ¼ I; II; III for i ¼ 1; 2; 3, respectively, and s; t 6¼ r subsequently taking the values I, II, III, with s 6¼ t.
The material parameters in Table 2, which characterize the values of the strain energy density at b0-type

solutions are:
g1 ¼ ĉc11½ĉc11 þ ĉc33 � 2ðĉc13 þ ĉc44Þ� � ðĉc12 � ĉc13Þ2; ð65Þ

g2 ¼ ĉc11ĉc33 � ðĉc13 þ ĉc44Þ2; ð66Þ

g3 ¼ ĉc11ĉc13 þ ĉc12ĉc33 � ðĉc13 þ ĉc44Þðĉc12 þ ĉc13Þ; ð67Þ

g4 ¼ ðĉc33 � ĉc44Þðĉc11 � ĉc44Þ � ĉc213; ð68Þ



Fig. 9. Regions in the plane of the normalized principal strains ðeII=eI; eIII=eIÞ where b01- and b001-type solutions exist and line corre-

sponding to solution c1. Case of Ca2Sr(C2H5CO2)6: 2âa12=j ¼ �0:7405, ðâa33 � âa11Þ=j ¼ 0:4747, 2âa012=j
0 ¼ �0:9185, ðâa033 � âa011Þ=j0 ¼

0:2263, d ¼ 0:8541.

Table 2

Values of the strain energy density at the critical points for tetragonal solids

Sol. type Strain energy density

a0 W a0i ¼ 1
2
½ĉc33e2r þ ĉc11ðe2s þ e2t Þ þ 2ĉc13erðes þ etÞ þ 2ĉc12eset�

a00 W a00i ¼ 1
4
½2ĉc33e2r þ ðĉc11 þ ĉc12Þðes þ etÞ2 þ ĉc66ðes � etÞ2 þ 4ĉc13erðes þ etÞ�

b0 W b0i ¼ 1
2j ½g1e2r þ g2ðe2s þ e2t Þ þ 2g3erðes þ etÞ þ 2g4eset�

b00 W b00i ¼ 1
2j0 ½g01e2r þ g02ðe2s þ e2t Þ þ 2g03erðes þ etÞ þ 2g04eset�
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whereas the homologous parameters associated to b00-type solutions are:
g01 ¼ ðĉc11 þ ĉc12 þ ĉc66Þ
ĉc33
2

 
� ĉc44

!
þ ĉc66ðĉc11 þ ĉc12 � 2ĉc13Þ � ĉc213; ð69Þ

g02 ¼ 1
2
ðĉc11 þ ĉc12 þ ĉc66Þĉc33 � ðĉc13 þ ĉc44Þ2; ð70Þ

g03 ¼ 1
2
ðĉc11 þ ĉc12 � ĉc66Þðĉc33 � ĉc44Þ � ĉc13ðĉc13 þ ĉc44 � ĉc66Þ; ð71Þ

g04 ¼ ðĉc33 � ĉc44Þð12ðĉc11 þ ĉc12 þ ĉc66Þ � ĉc44Þ � ĉc213: ð72Þ
The value of the strain energy density corresponding to each c-type solution turns out to be numerically

equal to that found for the homologous b0- and b00-type solutions with the same principal direction of strain

lying in the plane P, taking the constraints fulfilled by the principal strains into account (see Eqs. (62)–

(64)). Explicitly,
W ci ¼ W b0i ¼ W b00i ; i ¼ 1; 2; 3: ð73Þ
Thus, a maximum of twelve distinct values exists for the strain energy density at the stationarity points.

In order to classify the stationarity points, here it is proposed to compare the values of the strain energy
density corresponding to solutions pertaining to each one of the classes a0, a00, b0 and b00, characterized by the
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same principal strain(s) lying in the plane P. Compare first any pair of solutions belonging to classes a0 and
a00 with xIII in the plane P, e.g., solutions a01 and a001 (but the same conclusions could be drawn by comparing

solutions a02 and a002). Note that xI is aligned with x3 in both solutions. The difference between the corre-

sponding values of the strain energy density is
W a0
1 � W a00

1 ¼ 1
4
cðeII � eIIIÞ2: ð74Þ
The sign of this difference depends uniquely on the material parameter c. By generalizing this result, it is

possible to state that, if c > 0 one of the a0-type solutions has an energy higher than the energy associated

with all of the a00-type solutions, and that one of the a00-type solutions has an energy lower than the energy

associated with all of the a0-type solutions. The opposite holds for materials with c < 0. Note that, if the

state of strain and the material parameters are such that none of the solutions pertaining to classes b0and b00

exists, no further classification has to be done, and only the material parameter c settles the class to which

the stiffest solution belongs, and the class to which the most flexible one pertains.

Compare now the solutions belonging to classes a0 and b0 with xIII in the plane P, for instance solutions
a01 and b03, so that xIII is aligned with either x1 or x2 in both solutions. The difference between the corre-

sponding values of the strain energy density is
W a0
1 � W b0

3 ¼ 1

2j
ðâa11eI þ âa33eII þ âa12eIIIÞ2: ð75Þ
The sign of this difference depends uniquely on the material parameter j. By generalizing this result, it is

possible to state that, if j > 0 one of the a0-type solutions has an energy higher than the energy associated

with all of the b0-type solutions, and that one of the b0-type solutions has an energy lower than the energy

associated with all of the a0-type solutions. The opposite holds for materials with j < 0.

Similar conclusions apply obviously when a00- and b00-type solutions are compared, with reference to the

material parameter j0.

Finally, consider a pair of solutions pertaining to classes b0 and b00, with the same principal strain di-
rection, say xIII, aligned with either x1 or x2 in the former case, and with either x01 or x

0
2 in the latter case. The

difference between the corresponding values of the strain energy density is
W b0
3 � W b00

3 ¼ c
4jj0 ½ðâa11 þ âa12 þ 2âa33ÞeIII � âa33I1�2: ð76Þ
The sign of this difference depends only on the material parameter c=jj0. It follows that, if c=jj0 > 0 (resp.,

c=jj0 < 0) one of the b0-type solutions has an energy higher (resp., lower) than the energy associated with

all of the b00-type solutions, and that one of the b00-type solutions has an energy that is lower (resp., higher)

than the energy at any one of the b0-type solutions.

When the energy values associated with the solutions pertaining to the remaining pairs of classes are

compared, the signs of the relevant differences are explicitly affected by the values of the principal strains.

Thus, no general conclusion can be drawn according uniquely to material parameters regarding the clas-

sification of the energy values relevant to solutions belonging to classes a0 and b00, or to classes a00 and b0.
The classification of the stationarity points for the strain energy density is summarized in Fig. 10. Ob-

viously, if any solution depending on the state of strain (b0- and b00-type solutions) is not admissible, the

corresponding inequality in the chart of Fig. 10 has to be disregarded. By analyzing Fig. 10, for most ma-

terials with tetragonal symmetry it is possible to detect the class of solutions to which absolute maxima or

absolute minima for the strain energy density belong, according only to the sign of the material parameters c,
j and j0. Exceptions are materials with c, j > 0 and j0 < 0, or with c, j < 0 and j0 > 0. In the former case, it

is just possible to state that, a priori, absolute maxima pertain either to class a0 or b00, and absolute minima

pertain either to class a00 or b0; the opposite applies in the latter case. For these materials a complete clas-
sification requires the values of the principal strains to be explicitly taken into account, case by case.



Fig. 10. Tetragonal symmetry: classification of the stationarity points for the strain energy density.
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Once the classes of solutions that yield the extrema of the strain energy density have been identified, it is

easy to mutually compare the three solutions pertaining to each class to detect which one corresponds to an
absolute maximum or minimum.

For the sake of illustration, some plots of the strain energy density are now presented for a material with

tetragonal symmetry, namely Ba2Si2Ti3O8, subjected to different states of strain. Two of the principal

strains are kept constant in all of the cases considered (namely, eII ¼ 10, eIII ¼ �15), whereas the remaining

principal strain, eI, takes different values in each case. The strain energy density W is normalized to the

reference value WI , and is plotted versus two of the Euler�s angles, h1 and h2. The third angle, h3, is given a

constant value of 0 (so that xI lies in the plane x1x2 in all of the cases considered). The contour plots of the

strain energy density are also shown, with the stationarity points for W marked out. The values of the
elastic coefficients for the selected material, expressed in GPa, are (see Landolt and B€oornstein, 1992):
ĉc11 ¼ 140, ĉc33 ¼ 83, ĉc44 ¼ 66, ĉc66 ¼ 128, ĉc12 ¼ 36, ĉc13 ¼ 24, so that c ¼ �14, j ¼ 43 and j0 ¼ 50.

Fig. 11(a) refers to the special case where the stationarity points corresponding to the solutions per-

taining to all of the classes, a0, a00, b0, b00 and c, exist, (which, in the example, occurs at eI ¼ 0:636). In this

case, the values of the strain energy density corresponding to solutions b01, b
00
1, and c1 all coincide: infinite

stationarity points exist, which are independent on h1.
Note that, consistently with the chart in Fig. 10, one has
W a00
2 > W a0

2 > W a00
3 > W a0

3 > W b0
1 ¼ W b00

1 ¼ W c1 : ð77Þ
Fig. 11(b) refers to any situation in which the values of the principal strains preclude the existence of c-type
solutions: the value selected for eI is 25. The angles h2 at which b0-type solutions exist are 0.934 and
p� 0:934, whereas the angles at which b001-type solutions exist are 0.757 and p� 0:757. In this case, the

values of the strain energy density corresponding to the stationarity points with h3 ¼ 0 are such that
W a00
2 > W a00

3 > W a0
3 > W a0

2 > W b00
1 > W b0

1 ; ð78Þ
so that each of the solutions with at least one of the principal strain directions aligned with either x01 or x
0
2

(i.e., a002, a
00
3 or b

00
1) has an energy higher than the homologous solution with the same principal direction(s) of

strain aligned with either one of the coordinate axes x1 or x2 (i.e., a02, a
0
3 or b01).

The state of strain to which Fig. 12(a) refers is such that both one of the b0-type solutions and the c-type
solutions are missing; the value selected for eI is 60. The angles h2 at which b001-type solutions exists are 0.898
and p� 0:898. In this case, the order for the values of the strain energy density at the stationarity points with
h3 ¼ 0 is
W a00
3 > W a00

2 > W b00
1 > W a0

3 > W a0
2 ; ð79Þ
which lends itself to the same remark made with reference to Fig. 11(b).



Fig. 11. Tetragonal symmetry: plots of the strain energy density for Ba2Si2Ti3O8 (normalized to WI ) versus the Euler�s angles h1, h2 at
h3 ¼ 0 and relevant contour plots––(a) existence of all types of solutions; (b) case in which c-type solutions do not exist.
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Finally, Fig. 12(b) refers to a state of strain for which only a0- and a00-type solutions exist; the value

selected for eI is )100. The strain energy density takes higher values when the principal strains are aligned

with x01x
0
2x3 rather than with the coordinate axes, namely,
W a00
2 > W a00

3 > W a0
2 > W a0

3 : ð80Þ
5. Transverse isotropy

The textured transversely isotropic symmetry is a special case of the crystalline hexagonal symmetry

(see, e.g., Cowin and Mehrabadi, 1995). It is characterized by a plane of elastic mirror symmetry, P,

and an infinity of indistinguishable planes of mirror symmetry orthogonal to P. All these planes

intersect at the same axis, x3, which turns out to be an axis of elastic symmetry of infinitely high

order, i.e., an axis of rotational symmetry. Plane P will be called �plane of transverse isotropy�. This
material symmetry can be seen as a special case of the tetragonal symmetry dealt with in the previous

section and visualized in Fig. 2: P is the plane normal to the unit vector a5, whereas any vector lying

in P is itself a normal to a plane of mirror symmetry. Examples of artificial transversely isotropic
materials are, on the macroscopic scale, those materials having a bundled structure, as unidirectional



Fig. 12. Tetragonal symmetry: plots of the strain energy density for Ba2Si2Ti3O8 (normalized to WI ) versus the Euler�s angles h1, h2 at
h3 ¼ 0 and relevant contour plots––(a) case in which c- and b0-type solutions do not exist; (b) case in which only a-type solutions exist.
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fiber reinforced composites, whereas layered rocks and soils, formed by the superposition of isotropic

layers parallel to the bedding plane, are an example of natural macroscopically transversely isotropic
media. Occasionally, the term �cross-anisotropic� is found in the literature to denote transversely

isotropic soil deposits (see, e.g., Bowles, 1988).

The linear elastic behaviour of transversely isotropic solids is defined by five independent elastic con-

stants. Let x1x2x3 be an orthogonal reference frame, with x1 and x2 being any pair of axes lying in the plane

of transverse isotropy. In this reference frame, the matrix of the components of the elasticity tensor takes

the form:
bCC ¼

ĉc11 ĉc12 ĉc13 0 0 0
ĉc12 ĉc11 ĉc13 0 0 0

ĉc13 ĉc13 ĉc33 0 0 0

0 0 0 ĉc44 0 0

0 0 0 0 ĉc44 0

0 0 0 0 0 ĉc11 � ĉc12

0BBBBBB@

1CCCCCCA: ð81Þ
This is a special case of Eq. (33), where account is taken of the isotropic behaviour of the material in the

plane P, which implies ĉc66 ¼ ĉc11 � ĉc12. Note that the mutual orientation of any strain (or stress) tensor to

the symmetry planes of a transversely isotropic solid is completely defined by the orientation of the axis of
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rotational symmetry, x3, to the principal strain directions, xI; xII; xIII. This orientation is known once two of

the Euler�s angles, h2 and h3, are, whereas h1 does not play any role.

By performing the decomposition of the elasticity tensor according to Eqs. (27) and (30), the strain

energy density, W , can be expressed as the sum of an isotropic term WI , given by Eq. (31), and an aniso-
tropic term, WA, given by
Table

Euler�s

Sol.

a1
a2
a3

b1
b2
b3
WA ¼ 1
2
½âa11ðe21 þ e22 þ e26Þ þ âa33e23 þ 2âa12ðe1e2 � 1

2
e26Þ�: ð82Þ
Only this latter contribution is affected by relative rotations of the principal directions of strains to the

material symmetry axes.

The necessary condition to be fulfilled by the strain tensor to achieve collinearity with the stress tensor,
and thus stationarity of the strain energy density, is detCBA ¼ detABA ¼ 0. Explicitly (see Eq. (36)),
� 1

4
ffiffiffi
2

p ðâa11 � âa12Þ2ðâa11 þ âa12 � âa33Þ sin2 h2 sin
2 2h2 sin

2 2h3 ¼ 0 ð83Þ
with âa11 ¼ ĉc11 � ĉc13 � ĉc44, âa12 ¼ ĉc12 � ĉc13 and âa33 ¼ ĉc33 � ĉc13 � ĉc44. This equations is fulfilled if at least one
of the Euler�s angles h2, h3 is either equal to zero or p=2, similarly to the more general case of solids with

tetragonal symmetry. This condition amounts at requiring that at least one of the principal directions of

strain must lie in the plane of transverse isotropy or that, alternatively, the axis of rotational symmetry

must lie in any of the planes defined by a pair of principal directions of strain.

The classification of the possible orientations that ensure collinearity of the stress and the strain tensors,

as well as the relevant energy values, can be deduced by the results established in the previous section. Since

P ¼ ðx1; x2Þ is the plane of isotropy, only two classes of solutions exist, and are characterized by the fol-

lowing conditions:

(a) one of the principal directions of strain is aligned with the normal to the plane of transverse isotropy,

i.e., with x3; the other two lie in P;

(b) only one of the principal directions of strain lies in the plane of transverse isotropy P.

Both a0- and a00-type solutions for solids with tetragonal symmetry reduce to a single a-type class of

solutions for transversely isotropic solids. Analogously, b0-, b00- and c-type solutions, obtained for the

tetragonal case, all reduce to a single b-type class of solutions for transversely isotropic solids. Here again,
a-type solutions are possible for any given state of strain, whereas b-type solutions exist only if the principal

strains fulfil certain constraints, as discussed in Section 4.1.

The critical points for the strain energy density are summarized in Table 3, where the relevant values of

the Euler�s angles (h2, h3) and the orientations of the axis of rotational symmetry, x3, to the principal di-

rections of strain are listed. Note that different values can be given to the Euler�s angles, other than those
3

angles and orientations of the principal strain directions at the critical points for transversely isotropic solids

type x3 h2 h3

xI p
2

p
2

xII p
2

0

xIII 0 Any

2 ðxII; xIIIÞ Eq. (55) or (59) 0

2 ðxI; xIIIÞ Eq. (56) or (60) p
2

2 ðxI; xIIÞ p
2

Eq. (57) or (61)
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listed in Table 3, leading to the same physical orientations of the axes. The angles characterizing b-type
solutions are given indifferently by the expressions obtained in Section 4.1 for b0- and b00-type solutions.

The values of the strain energy density corresponding to a- and b-type solutions are, respectively:
W ai ¼ 1

2
ðĉc33e2r þ ĉc11ðe2s þ e2t Þ þ 2ĉc13erðes þ etÞ þ 2ĉc12esetÞ; ð84Þ

W bi ¼ 1

2j
½g1e2r þ g2ðe2s þ e2t Þ þ 2g3erðes þ etÞ þ 2g4eres�: ð85Þ
Here, r ¼ I; II; III for i ¼ 1; 2; 3, respectively, s; t 6¼ r subsequently take the values I, II, III, with s 6¼ t, and
gj, j ¼ 1; . . . ; 4, are given by Eqs. (65)–(68).

Stationarity points of type b exist provided that the Euler�s angles h2 or h3 given by Eqs. (55)–(57) can
actually be defined. Inequalities of the type (58) have then to be fulfilled, which involve both the principal

strains and the elastic properties of the material.
5.1. Classification of the stationarity points

The problem of ordering the values corresponding to the different stationarity points for the strain
energy density can be split into two separate sub-problems, similarly to the procedure followed in Section

4.2 for solids with tetragonal symmetry. First, the class of solutions (a or b) in which absolute maxima or

minima fall are identified, according only to the sign of a material parameter. Then, the solutions corre-

sponding to the extrema for the strain energy density are explicitly determined, by mutually comparing the

three energy values pertaining to each class.

Compare a pair of solutions belonging to classes a and b, with the same principal strain direction (e.g.,

xIII) lying in the plane of transverse isotropy, P. Provided that the Euler�s angle which characterizes the

b-type solution exists, the difference between the corresponding values of the strain energy density reads
W a1 � W b3 ¼ 1

2j
ðâa11eI þ âa33eII þ âa12eIIIÞ2: ð86Þ
The sign of this difference depends uniquely on the material parameter j. Thus, similarly to what stated in
Section 4.2, if j > 0 one of the a-type (resp., b-type) solutions has an energy higher (resp., lower) than the

energy associated with all of the b-type solutions. The opposite applies for materials with j < 0. Accounting

for this distinction, absolute maxima and minima can easily be obtained by exploring the three energy

values pertaining to each class.

It is worth noting that the above classification is consistent with the chart shown in Fig. 10, taking into

account that, for transversely isotropic materials, c ¼ 0 and j0 ¼ j.
For the sake of illustration, the strain energy density for a transversely isotropic solid is plotted in Fig. 13

versus two of the Euler�s angles, h2 and h3. The value of the third angle, h1, is immaterial. The strain energy
density W is normalized to the value WI given by Eq. (31). The contour plots of the strain energy density are

also shown, with the stationarity points for W marked out. The material selected is titanium boride (TiB2):

the values of the elastic coefficients for this material, expressed in GPa, are (see Landolt and B€oornstein,
1992): ĉc11 ¼ 690, ĉc33 ¼ 440, ĉc12 ¼ 410, ĉc13 ¼ 320, ĉc44 ¼ 500. Since for this material j ¼ �510 GPa, it is

possible to state a priori that W finds its maximum at one of the b-type stationarity points (provided that at

least one of these solutions exists) and its minimum at one of the a-type stationarity points. The values

given to the principal strains (namely, eI ¼ 4, eII ¼ �5, eIII ¼ 1) are such that all of the three b-type so-

lutions exist. The corresponding Euler�s angles at which b-type solutions exist are: h2 ¼ 0:7396, p� 0:7396
and h3 ¼ 0 for solution b1; h2 ¼ 0:67, p� 0:67 and h3 ¼ p=2 for solution b2; h2 ¼ p=2, h3 ¼ 0:793, p� 0:793
for solution b3. In this case, at the stationarity points the values of the strain energy density are such that



Fig. 13. Hexagonal(5) symmetry: plots of the strain energy density for TiB2 (normalized to WI ) versus the Euler�s angles h2, h3 and

relevant contour plots.
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W b3 > W b1 > W b2 > W a3 > W a1 > W a2 ; ð87Þ
which is consistent with the negativity of j.
6. Cubic symmetry

Cubic symmetry is characterized by nine planes of elastic mirror symmetry. This set of planes is formed

by three mutually perpendicular planes, normal to the unit vectors a1, a2 and a3, and by six planes whose

normals are ða1 � a2Þ=
ffiffiffi
2

p
, ða2 � a3Þ=

ffiffiffi
2

p
, and ða3 � a1Þ=

ffiffiffi
2

p
(see Fig. 14). The three planes of the former set

are physically indistinguishable; the same applies for the six planes of the latter one, but the elastic

properties exhibited by the material respect to any plane of the former set differ from those exhibited respect

to any plane of the latter, unless the material is isotropic.

Let x1x2x3 be a reference system collinear with a1; a2; a3; the three axes are physically indistinguishable.
In this frame, the matrix of the components of the elasticity tensor takes the form:



Fig. 14. Planes of elastic mirror symmetry for materials with cubic symmetry.
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bCC ¼

ĉc11 ĉc12 ĉc12 0 0 0
ĉc12 ĉc11 ĉc12 0 0 0

ĉc12 ĉc12 ĉc11 0 0 0

0 0 0 ĉc44 0 0

0 0 0 0 ĉc44 0

0 0 0 0 0 ĉc44

0BBBBBB@

1CCCCCCA: ð88Þ
This is a special case of Eq. (33), with ĉc33 ¼ ĉc11, ĉc13 ¼ ĉc12, ĉc66 ¼ ĉc44.
In this case, the strain energy density is given by (see Eqs. (29), (31) and (35))
W ¼ WI þ 1
2
âa11ðe21 þ e22 þ e23Þ; ð89Þ
with âa11 ¼ ĉc11 � ĉc12 � ĉc44 � c, see Eq. (40).

Referring to Eq. (36), which is in general the necessary condition that ensures coaxiality of the stress and

the strain tensors at any point of a body with tetragonal elastic symmetry, it immediately prompts out that
this condition is identically fulfilled for materials with cubic symmetry. An alternative and independent

proof of the identity detCBA ¼ detABA � 0 for materials with cubic symmetry is given in Appendix. Thus,

contrary to the cases of materials with tetragonal symmetry and transversely isotropic solids, where col-

linearity of the stress and the strain tensors can be achieved only provided that at least one of the principal

directions of strain lies in the plane of material symmetry x1x2, no restriction of this type applies a priori for

materials with cubic symmetry.

Since the matrix CBA in Eqs. (24) is singular for any strain state, the search for the eigensolutions of this

system proceeds differently from the case of tetragonal symmetry, where special values had to be imposed to
either one of the Euler�s angles h2 and h3 to achieve collinearity.

Unless the Euler�s angles take special values,CBA is of rank 2. Taking into account that c43 ¼ �ðc41 þ c42Þ,
c53 ¼ �ðc51 þ c52Þ and c63 ¼ �ðc61 þ c62Þ (see Appendix), the eigensolutions of the system (24) are

eI ¼ eII ¼ eIII. Thus, unless the state of strain is isotropic, the Euler�s angles that render the strain energy
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density stationary must be such that the rank ofCBA is equal to one (or zero). By extracting any second-order

minor of CBA (e.g., the algebraic complement of c63, D63), one has
D63 ¼ c41c52 � c42c51

¼ 1
2
âa211 sin 2h1 sin 2h2 sin h2½cos 2h1 cos 2h2 cos 2h3 � 1

4
sin 2h1 cos h2ð1þ 3 cos 2h2Þ sin 2h3�; ð90Þ
which vanishes if either h1 or h2 is equal to 0 or p=2, or if the Euler�s angles are such that
tan 2h1 tan 2h3 ¼
4 cos 2h2

cos h2ð1þ 3 cos 2h2Þ
: ð91Þ
It is possible to show that any other minor of CBA vanishes if Eq. (91) applies; provided that the Euler�s
angles fulfil Eq. (91), the rank of CBA is equal to one. By inspection of the other minors of order two of CBA,

one finds that other cases in which this matrix is at most of rank 1 are:
h1 ¼ 0 or
p
2
; h2 ðor h3Þ ¼

p
4

or
3p
4
; ð92Þ

h2 ¼ � p
2
; h1 ðor h3Þ ¼

p
4

or
3p
4
; ð93Þ

h2 ¼ 0 8h1; h3: ð94Þ
Some of these combinations of Euler�s angles also fulfil Eq. (91).

Once the conditions ensuring the possibility for the strain energy density to be stationary for non-

isotropic states of strain have been singled out, the search for the stationarity points proceeds similarly to

the procedure followed in Section 4. The combinations of Euler�s angles that make vanish all the minors

of order two of CBA are subsequently substituted in Eq. (24), and the system is found to be fulfilled either:

(a) by special sets of angles that make the matrix of rank 0, regardless of the state of strain, or

(b) by combinations of the principal strains dependent on the Euler�s angles, if CBA is of rank 1.

The former possibility, (a), corresponds to solutions referred to as a0 and a00 in Section 4: either all the

principal strains are aligned with the material symmetry axes x1; x2; x3 (a0-type solutions), or one of the

principal strains is aligned with one of the material symmetry axes, with the other two rotated of p=4 to

the remaining symmetry axes (a00-type solutions). Note that b0-type solutions found in Section 4.1 reduce to

a00-type solutions for cubic materials. Being the material axes mutually interchangeable, the strain energy
density takes the same value at any one of the a0-type solutions, that is (see Eq. (89))
W a0 ¼ 1
2
ðĉc12I2

1 þ ðĉc11 � ĉc12ÞI2Þ: ð95Þ
The value of the strain energy density at any a00-type solution, with any principal strain direction xr aligned
with any one of the material symmetry axes x1x2x3, is
W a00i ¼ 1
2
ðĉc12I2

1 þ ĉc44I2 þ ðĉc11 � ĉc12 � ĉc44Þðe2r þ 1
2
ðI1 � erÞ2ÞÞ ð96Þ
with r ¼ I; II; III for i ¼ 1; 2; 3, respectively.
The latter possibility, (b), corresponds to combinations of the Euler�s angles that fulfil Eq. (91). Note

that, in particular, Eq. (91) is satisfied whenever h1 (or h3) is equal to np=2 (n integer) and h2 ¼ mp=4 (m
odd), etc. These cases generalize the solutions referred to as b00 in Section 4, with one of the principal di-

rections of strain aligned with any bisector of a couple of coordinate axes. However, contrary to materials
with tetragonal symmetry or transversely isotropic solids, for cubic symmetry the stress and strain tensors

can be coaxial also when none of the principal directions of strain lies in any one of the material symmetry
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planes, provided that Eq. (91) applies. In this instance, solving any one of the three equations forming the

system (24) for one of the principal strains (say, eIII), one gets
eIII ¼
eI þ eII

2
� 3

2
ðeI � eIIÞ cos 2h3

1� cos 2h2
1þ 3 cos 2h2

: ð97Þ
Rearranging Eqs. (91) and (97), it is possible to express the values of two of the Euler�s angles, at which the

stress and the strain tensor are collinear, in terms of the third angle and the given principal strains:
cos 2h2 ¼ 1� 2

3

eI þ eII � 2eIII
eI sin

2 h3 þ eII cos2 h3 � eIII
ð98Þ
tan 2h1 ¼
eI cos2 h3 þ eII sin

2 h3 � ðeI sin2 h3 þ eII cos2 h3Þ cos2 h2 � eIII sin
2 h2

ðe � e Þ cos h sin 2h
: ð99Þ
I II 2 3
Eq. (98) shows that, if
eI � eII
eI þ eII � 2eIII

���� ����6 1
3
; ð100Þ
the Euler�s angle h2 defined by Eq. (98) exists for any value of h3, and so does h1 defined by Eq. (99). If the

principal strains do not fulfil the constraint (100), h3 cannot take arbitrary values; note, however, that for

any given strain state it is always possible to find values of h3 that give real values for h2 according to Eq.

(98), that is, b-type critical points.
It is interesting to note that, by computing the axial strain components along the coordinate axes

x1; x2; x3 accounting for Eqs. (98) and (99), one gets
e1 ¼ e2 ¼ e3 ¼ 1
3
I1; ð101Þ
which means that b-type solutions are characterized by equally strained material symmetry axes. Taking

Eq. (101) into account, from Eq. (89) it readily prompts out that the value of the strain energy density in

any b-type solution is
W b ¼ WI þ 1
6
âa1112I

2
1 ¼ 1

2
½1
3
ðĉc11 þ 2ĉc12 � ĉc44ÞI2

1 þ ĉc44I2�: ð102Þ
To summarize, it is possible to state that, for materials with cubic symmetry, the strain energy density is
stationary respect to the Euler�s angles either if at least one of the principal strain directions is aligned with

one of the material symmetry axes (and the other two are collinear with the remaining symmetry axes, or

bisect them), or if the principal strains are rotated to the material symmetry axes so as to make equal the

axial strains along them. These results were already established in Rovati and Taliercio (1991) through an

alternative approach.

6.1. Classification of the stationarity points

To order the values of the strain energy density for a cubic solid at the critical points, the values cor-

responding to any pair of stationarity points are subsequently compared. Consider first a0- and b-type
solutions and subtract Eq. (102) from Eq. (95):
W a0 � W b ¼ 1
2
âa11ðI2 � 1

3
I2

1Þ ¼ 1
6
âa11ððeI � eIIÞ2 þ ðeII � eIIIÞ2 þ ðeIII � eIÞ2Þ: ð103Þ
Thus, W a0 PW b for materials with âa11 > 0, whereas W a0
6W b for materials with âa11 < 0.
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As far as the comparison between a0- and a00-type solutions is concerned, referring to the results es-

tablished in Section 4.2 for materials with tetragonal symmetry, it is possible to state that W a0 � W a00i P 0

(resp. 6 0) for any i, if cð� âa11Þ > 0 (resp. <0).

Consider now the difference of the strain energy density associated with any a00-type solution (Eq. (96))
and with b-type solutions (Eq. (102)):
Fig. 15

and re
W a00i � W b ¼ 1
2
âa11 e2r
�

þ 1
2
ðI1 � erÞ2

�
� 1

6
âa1112I

2
1 ¼ 1

12
âa11ð3er �I1Þ2; ð104Þ
with r ¼ I; II; III for i ¼ 1; 2; 3, respectively. Thus, W a00i � W b P 0 (resp. 6 0) for any i, if cð� âa11Þ > 0

(resp. <0).

To summarize, it is possible to state that the extrema for the strain energy density of solids with cubic

symmetry always correspond to a0-type or to b-type solutions, that is, to full collinearity or no collinearity

of the material axes x1, x2, x3 with the principal directions of strain, respectively. W a0 is an absolute maxi-

mum and W b is an absolute minimum for materials with âa11 > 0; the opposite applies for materials with

âa11 < 0. Solutions of a00-type, with only one of the principal strain directions aligned with any one of the
material symmetry axes, are just relative maxima or minima.
. Cubic symmetry: plots of the strain energy density for aluminium (normalized to WI ) versus the Euler�s angles h1, h2 at h3 ¼ p=7
levant contour plots.
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For the sake of illustration, in Fig. 15 the strain energy density of aluminum (Al) subjected to a state of

strain characterized by eI ¼ 10, eII ¼ 5, eIII ¼ �5, is plotted versus two of the Euler�s angles, h1 and h2. The
third angle, h3, is given a constant value of p=7. The elastic constants of this cubic material (in GPa, see

Landolt and B€oornstein, 1992) are ĉc11 ¼ 108, ĉc12 ¼ 62, ĉc44 ¼ 56:6, so that âa11 ¼ �10:6 < 0. The strain energy
density is normalized to WI , given by Eq. (31). With the values chosen for the principal strains, inequality

(100) applies, and b-type solutions exist for any h3. The contour plots of the strain energy density are also

reported, with the points corresponding to any stationarity point marked out. Note that some points in the

surface representing W =WI correspond to partial stationarity with respect to h1 and h2, but not with respect

to h3.
By direct inspection of Fig. 15, one can immediately note that
W b > W a00
3 > W a0 ; ð105Þ
which is consistent with âa11 < 0.
7. Concluding remarks

With reference to linearly elastic anisotropic solids, the orientations of the material symmetry axes to the

principal directions of strain (or stress) corresponding to critical points for the strain energy density

function have been sought. First, the property of coaxiality that the stress and strain tensors meet when

these critical points are attained has been outlined. Then, on the basis of such a general property, all the

orientations corresponding to absolute and relative maxima and minima have been found for tetragonal

(6), hexagonal (5) and cubic material symmetries, in terms of triplets of Euler�s angles. For each of these
symmetry classes, the corresponding stationarity values of the energy density have been analytically

computed and compared each other.

In the case of tetragonal symmetry (Section 4), three classes of solutions have been found. The

first class is that identified by Cowin (1994), and is characterized by complete collinearity of the prin-

cipal directions of stress, strain, and material symmetry axes. In this class, stationarity points of the strain

energy density exist for any strain state. The second one is characterized by collinearity of only one of

the principal directions of strain with any one of the material symmetry axes lying in a particular plane of

elastic symmetry (plane P, see Fig. 2). The stationarity points belonging to this class exist provided
that the given principal strains fulfil certain inequalities involving the elastic constants. Finally, in the

special case where the principal strains fulfil a linear constraint (depending on the elastic constants),

stationarity can be achieved simply with one of the principal directions of strain lying in the plane of

elastic symmetry P, without any collinearity with material symmetry axes. The order of the strain

energy density values at the stationarity points is shown to depend on three material parameters, j, j0

and c.
The case of transverse isotropy (Section 5) has been studied as a special sub-case of tetragonal symmetry.

The presence of a plane of elastic isotropy P (i.e., of an axis of rotational symmetry) simplifies the dis-
cussion. Only two classes of critical points exist: one in which the axis of rotational symmetry coincides with

any one of the principal directions of strain; the other one, characterized by one of the principal directions

of strain lying in the plane P. For transverse isotropy, only one material parameter, j, governs the order of
the values of the energy density at the stationarity points.

For both classes of solids considered above, the plane of elastic symmetry P is found to contain always

at least one of the principal directions of strain.

Substantial differences emerge when the cubic symmetry is dealt with (Section 6). Beside the solutions

corresponding to complete collinearity, stationarity of the strain energy density can also be achieved, for
any state of strain, when none of the principal directions of strain (and stress) lies in any one of the elastic
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mirror symmetry planes. Only one material parameter, c, rules the order of the values of the strain energy

density corresponding to the two classes of solutions identified.
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Appendix. Singularity of ABA for the cubic symmetry

The necessary condition for stationarity of the strain energy density is given by Eq. (32), and reads

detABA ¼ 0. ABA is the lower left square unsymmetric part of:
A ¼ qbAAqT: ð106Þ
In the case of cubic symmetry, this expression can be written in symbolic form as
A ¼ qAA qAB
qBA qBB

� � bAAAA 0

0 0

� �
qTAA qTBA
qTAB qTBB

� �
: ð107Þ
Thus, the necessary condition for stationarity is
detABA ¼ detðqBA bAAAAq
T
AAÞ ¼ 0; ð108Þ
where
bAAAA ¼ diagðâa11; âa11; âa11Þ ð109Þ
and matrices qBA and qAA are given by Eqs. (14) and (12) in terms of the Cartesian components Qij of the

rotation tensor in three dimensions. By exploiting the matrix product in (108), the elements of the first row

of matrix ABA turn out to be:
a41 ¼
ffiffiffi
2

p
âa11ðQ21Q31Q2

11 þ Q22Q32Q2
12 þ Q23Q33Q2

13Þ; ð110Þ
a42 ¼

ffiffiffi
2

p
âa11ðQ3

21Q31 þ Q3
22Q32 þ Q3

23Q33Þ; ð111Þ
a43 ¼

ffiffiffi
2

p
âa11ðQ21Q3

31 þ Q22Q3
32 þ Q23Q3

33Þ: ð112Þ
From the orthogonality condition QTQ ¼ 1, the following expressions can be obtained:
Q2
31 ¼ 1� Q2

11 � Q2
21; ð113Þ

Q2
32 ¼ 1� Q2

12 � Q2
22; ð114Þ

Q2
33 ¼ 1� Q2

13 � Q2
23; ð115Þ
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which, substituted into Eq. (112), easily furnish
a43 ¼
ffiffiffi
2

p
âa11fðQ21Q31 þ Q22Q32 þ Q23Q33Þ � ðQ21Q31Q2

11 þ Q22Q32Q2
12 þ Q23Q33Q2

13Þ
� ðQ3

21Q31 þ Q3
22Q32 þ Q3

23Q33Þg: ð116Þ
By virtue of orthogonality QQT ¼ 1, the first term in round brackets in (116) vanishes, whereas the second

and third terms in brackets are equal to a41 and a42 respectively. Therefore,
a43 ¼ �ða41 þ a42Þ: ð117Þ
Repeating the same procedure for the second and third rows of matrix ABA, the following equalities are

accordingly obtained:
a53 ¼ � a51ð þ a52Þ; a63 ¼ � a61ð þ a62Þ: ð118Þ
Thus, in the cubic case, the third column of matrix ABA is equal to minus the sum of the first two, and
consequently this shows that detABA is always equal to 0.
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